【题目】已知数列{an}的前n项和Sn满足2an=2+Sn.
(1)求证:数列{an}是等比数列;
(2)设bn=log2a2n+1,求数列{bn}的前n项和Tn.
【答案】(1)见解析;(2)
【解析】
(1)运用数列的递推式和等比数列的定义,即可得证;
(2)运用等比数列的通项公式和等差数列的求和公式,计算即可得到所求和.
(1)证明:数列{an}的前n项和Sn满足2an=2+Sn,
可得2a1=2+S1=2+a1,解得a1=2;
n≥2时,2an-1=2+Sn-1,又2an=2+Sn,
相减可得2an-2an-1=2+Sn-2-Sn-1=an,
即an=2an-1,可得数列{an}是首项、公比均为2的等比数列;
(2)由(1)可得an=2n,
bn=log2a2n+1=log222n+1=2n+1,
数列{bn}的前n项和Tn=(3+2n+1)n=n2+2n.
科目:高中数学 来源: 题型:
【题目】已知抛物线:,点为直线上任一点,过点作抛物线的两条切线,切点分别为,,
(1)证明,,三点的纵坐标成等差数列;
(2)已知当点坐标为时,,求此时抛物线的方程;
(3)是否存在点,使得点关于直线的对称点在抛物线上,其中点满足,若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都是40%.现采用随机模拟的方法估计该运动员三次投篮恰有一次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6 ,7 ,8 ,9 ,0表示不命中;再以每三个随机数作为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907, 966, 191, 925, 271, 932, 812,458, 569, 683, 431, 257, 393, 027, 556, 488, 730, 113, 537, 989.据此估计,该运动员三次投篮恰有一次命中的概率为 ( )
A. 0.25 B. 0.2 C. 0.35 D. 0.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆C:的两个焦点是和,且椭圆C与圆有公共点.
(1)求实数a的取值范围;
(2)若椭圆C上的点到焦点的最短距离为,求椭圆C的方程;
(3)对(2)中的椭圆C,直线l:与C交于不同的两点M、N,若线段MN的垂直平分线恒过点,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC-A1B1C1中,AB=AA1=,AC=2,∠BAC=∠A1AC=45°,∠BAA1=60°,F为棱AC的中点,E在棱BC上,且BE=2EC.
(Ⅰ)求证:A1B∥平面EFC1;
(Ⅱ)求三棱柱ABC-A1B1C1的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将两块三角板按图甲方式拼好,其中, , ,
,现将三角板沿折起,使在平面上的射影恰好在上,如图乙.
(1)求证: ;
(2)求证: 为线段中点;
(3)求二面角的大小的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】越接近高考学生焦虑程度越强,四个高三学生中大约有一个有焦虑症,经有关机构调查,得出距离高考周数与焦虑程度对应的正常值变化情况如下表周数
周数x | 6 | 5 | 4 | 3 | 2 | 1. |
正常值y | 55 | 63 | 72 | 80 | 90 | 99 |
其中,,,
(1)作出散点图;
(2)根据上表数据用最小二乘法求出y关于x的线性回方程(精确到0.01)
(3)根据经验观测值为正常值的0.85~1.06为正常,若1.06~1.12为轻度焦虑,1.12~1.20为中度焦虑,1.20及以上为重度焦虑。若为中度焦虑及以上,则要进行心理疏导。若一个学生在距高考第二周时观测值为103,则该学生是否需要进行心理疏导?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)求函数的极值点;
(Ⅱ)若直线过点,并且与曲线相切,求直线的方程;
(Ⅲ)设函数,其中,求函数在区间上的最小值.(其中为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂今年初用128万元购进一台新的设备,并立即投入使用,计划第一年维修、保养费用8万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该设备使用后,每年的总收入为54万元,设使用x年后设备的盈利总额y万元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该设备开始盈利?
(3)使用若干年后,对设备的处理有两种方案:①年平均盈利额达到最大值时,以42万元价格卖掉该设备;②盈利额达到最大值时,以10万元价格卖掉该设备.问哪种方案处理较为合理?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com