精英家教网 > 高中数学 > 题目详情

(本题满分14分)
已知函数
(Ⅰ)求的最小值;
(Ⅱ)若上为单调增函数,求实数的取值范围;
(Ⅲ)证明:.

(Ⅰ)1;(Ⅱ);(Ⅲ)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数= 是自然对数的底)
(1)若函数是(1,+∞)上的增函数,求的取值范围;
(2)若对任意的>0,都有,求满足条件的最大整数的值;
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数.
(1)求函数的单调区间;
(2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)若曲线在点处与直线相切,求的值;
(2)求函数的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知是定义在上的奇函数,当时,
(1)求的解析式;
(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。
(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖。求证:若时,函数在区间上被函数覆盖。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本大题13分)已知函数为常数)
(1)若在区间上单调递减,求的取值范围;
(2)若与直线相切:
(ⅰ)求的值;
(ⅱ)设处取得极值,记点M (,),N(,),P(), , 若对任意的m (, x),线段MP与曲线f(x)均有异于M,P的公共点,试确定的最小值,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数a满足0<a≤2,a≠1,设函数f (x)=x3x2+ax.
(Ⅰ)当a=2时,求f (x)的极小值;
(Ⅱ)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.求证:g(x)的极大值小于等于

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数()  
(1)求函数的单调递减区间;
(2)若函数在区间[-2,2]上的最大值为20,求它在该区间上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数)若上是增函数,在(0,1)上是减函数,函数在R上有三个零点,且1是其中一个零点。
(1)求b的值;
(2)求最小值的取值范围。

查看答案和解析>>

同步练习册答案