精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函数f(x)= 的最大值为6.
(1)求A;
(2)将函数y=f(x)的图象像左平移 个单位,再将所得图象各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求g(x)在[0, ]上的值域.

【答案】
(1)解:函数f(x)=

=

=A(

=Asin(2x+ ).

因为A>0,由题意可知A=6.


(2)解:由(1)f(x)=6sin(2x+ ).

将函数y=f(x)的图象向左平移 个单位后得到,

y=6sin[2(x+ )+ ]=6sin(2x+ ).的图象.再将所得图象各点的横坐标缩短为原来的 倍,

纵坐标不变,得到函数y=6sin(4x+ )的图象.因此g(x)=6sin(4x+ ).

因为x∈[0, ],所以4x+ ,4x+ = 时取得最大值6,4x+ = 时函数取得最小值﹣3.

故g(x)在[0, ]上的值域为[﹣3,6].


【解析】(1)利用向量的数量积展开,通过二倍角公式以及两角和的正弦函数化为,一个角的一个三角函数的形式,通过最大值求A;(2)通过将函数y=f(x)的图象像左平移 个单位,再将所得图象各点的横坐标缩短为原来的 倍,纵坐标不变,得到函数y=g(x)的图象.求出g(x)的表达式,通过x∈[0, ]求出函数的值域.
【考点精析】关于本题考查的函数y=Asin(ωx+φ)的图象变换和三角函数的最值,需要了解图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象;函数,当时,取得最小值为;当时,取得最大值为,则才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)曲线相交于两点,求过两点且面积最小的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题方程表示焦点在轴上的椭圆,命题双曲线的离心率,若“”为假命题,“”为真命题,则的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(22),圆Cx2y28y0,过点P的动直线l与圆C交于AB两点,线段AB的中点为MO为坐标原点.

(1)M的轨迹方程;

(2)|OP||OM|时,求l的方程及△POM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个结论:

①平行于同一直线的两条直线互相平行;

②垂直于同一平面的两个平面互相平行;

③若是两个平面;是异面直线;且,则

④若三棱锥中,,则点在平面内的射影是的垂心;

其中错误结论的序号为__________.(要求填上所有错误结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合,若AB=B,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为 ,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(1)求该射手恰好命中一次得的概率;
(2)求该射手的总得分X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|ax2+2x+1=0aR}

1)若A只有一个元素,试求a的值,并求出这个元素;

2)若A是空集,求a的取值范围;

3)若A中至多有一个元素,求a的取值范围.

查看答案和解析>>

同步练习册答案