精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体ABCD﹣A1B1C1D1中,E,F,G,H分别为AA1 , AB,BB1 , B1C1的中点,则异面直线EF与GH所成的角等于(
A.45°
B.60°
C.90°
D.120°

【答案】B
【解析】解:如图,连A1B、BC1、A1C1 , 则A1B=BC1=A1C1 , 且EF∥A1B、GH∥BC1
锐角∠A1BC1就是异面直线所成的角,
所以异面直线EF与GH所成的角等于60°,
故选:B.

【考点精析】解答此题的关键在于理解异面直线及其所成的角的相关知识,掌握异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】欧阳修《卖油翁)中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌漓沥之,自钱孔入,而钱不湿,可见行行出状元,卖油翁的技艺让人叹为观止,若铜钱是直径为4 cm的圆,中间有边长为l cm的正方形孔.若随机向铜钱上滴一滴油(设油滴整体落在铜钱上).则油滴(设油滴是直径为0.2 cm的球)正好落入孔中(油滴整体落入孔中)的概率是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将直角△ABC沿着平行BC边的直线DE折起,使得平面A′DE⊥平面BCDE,其中D、E分别在AC、AB边上,且AC⊥BC,BC=3,AB=5,点A′为点A折后对应的点,当四棱锥A′-BCDE的体积取得最大值时,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足a1=2,Sn-4Sn-1-2=0(n≥2,n∈Z).

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)令bn=log2an,Tn{bn}的前n项和,求证 <2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为(
A.(﹣1,0)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市AB两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.

(1)A中学至少有1名学生入选代表队的概率;

(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ< )的部分图象如图所示,将f(x)的图象向左平移 个单位后的解析式为(
A.y=2sin(2x﹣
B.y=2sin(2x+
C.y=2sin(2x)
D.y=2sin(2x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABADADBCAD=6,BC=2AB=4,EF分别在BCAD上,EFAB.现将四边形ABCD沿EF折起,使平面ABEF⊥平面EFDC.

(Ⅰ)若BE=1,是否在折叠后的线段AD上存在一点P,且,使CP∥平面ABEF?若存在,求出λ的值,若不存在,说明理由;

求三棱锥ACDF的体积的最大值,并求出此时二面角EACF的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)当x≤0时,解不等式f(x)≥﹣1;
(2)写出该函数的单调区间;
(3)若函数g(x)=f(x)﹣m恰有3个不同零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案