精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知正方形ABCD和矩形ACEF,EC⊥平面ABCD.AB=1,AF=1,
(1)求证:AD⊥BF;
(2)求三棱锥C-BFD的体积.
分析:(1)证明直线与直线,先证明直线与平面垂直即要找到两条相交直线与之都垂直.在矩形ACEF中,EC∥AF,而EC⊥平面ABCD,故AF⊥面ABCD,得AF⊥AD,在正方形ABCD中AD⊥AB,所以AD⊥面AFB,可得AD⊥BF.
(2)三棱锥C-BFD的体积即三棱锥F-ABC的体积,其高为AF,底为面ABC,代入体积公式即可的其体积.
解答:解:(1)因为AF∥CE,
所以AF⊥ABCD,
所以AF⊥DA,又DA⊥AB,
所以DA⊥平面ABF,
所以AD⊥BF;
(2)因为VC-DBF=VF-CDB=
1
3
×
1
2
×1×1×1=
1
6
点评:本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD的边长为1,过正方形中心O的直线MN分别交正方形的边AB,CD于M,N,则当
MN
BN
最小时,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求证:CM∥平面BDF;
(II)求异面直线CM与FD所成角的余弦值的大小;
(III)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大小;
(2)在线段AC上找一点P,使PF与AD所成的角为60°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)如图,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,其中A与A'重合,且BB′<DD′<CC′.
(1)证明AD′∥平面BB′C′C,并指出四边形AB′C′D′的形状;
(2)如果四边形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的边长为
6
,求平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值.

查看答案和解析>>

同步练习册答案