精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=2x+2ax(a为实数),且f(1)=$\frac{5}{2}$.
(1)求函数f(x)的解析式;
(2)判断函数f(x)的奇偶性并证明;
(3)判断函数f(x)在区间[0,+∞)的单调性,并用定义证明.

分析 (1)根据条件利用待定系数法进行求解即可.
(2)根据函数奇偶性的定义进行证明,
(3)根据函数单调性的定义进行证明即可.

解答 解:(1)∵f(x)=2x+2ax(a为实数),且f(1)=$\frac{5}{2}$.
∴f(1)=2+2a=$\frac{5}{2}$.得2a=$\frac{1}{2}$,即a=-1,
则函数f(x)的解析式f(x)=2x+2-x
(2)f(-x)=2-x-2x=-(2x-2-x)=-f(x),
则函数f(x)是奇函数.
(3)设0≤x1<x2,f(x1)-f(x2)=${2}^{{x}_{1}}$-$\frac{1}{{2}^{{x}_{1}}}$-${2}^{{x}_{2}}$+$\frac{1}{{2}^{{x}_{2}}}$=(${2}^{{x}_{1}}$-${2}^{{x}_{2}}$)(1+$\frac{1}{{2}^{{x}_{1}+{x}_{2}}}$),
∵y=2x是增函数,∴${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,又1+$\frac{1}{{2}^{{x}_{1}+{x}_{2}}}$>0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2),函数f(x)是增函数.

点评 本题主要考查函数解析式的求解,以及函数单调性和奇偶性的判断,利用函数奇偶性和单调性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别是a,b,c,且满足cos2C-cos2A=2cos($\frac{π}{6}$-C)cos($\frac{π}{6}$+C).
(1)求角A的大小;
(2)若A<$\frac{π}{2}$,BC=$\sqrt{3}$,且sinA+sin(B-C)=2sin2C,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(-1,6),$\overrightarrow{b}$=(3,-2),则$\overrightarrow{a}$+$\overrightarrow{b}$=(  )
A.(4,4)B.(2,4)C.(-2,4)D.(-4,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设相量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,2),若m$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$垂直,则实数m等于(  )
A.-$\frac{6}{5}$B.$\frac{6}{5}$C.$\frac{9}{10}$D.-$\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=(2$\sqrt{3}$cosx,cosx),$\overrightarrow{n}$=(sinx,2cosx)(x∈R),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-1.
(Ⅰ)求函数f(x)的单调减区间;
(Ⅱ)已知锐角△ABC的三个内角分别为A,B,C,若f(A)=2,B=$\frac{π}{4}$,边AB=3,求边BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A($\sqrt{3}$,0)和P($\sqrt{3}$,t)(t∈R),若曲线x2+y2=3上存在点B使∠APB=60°,则t的最大值为(  )
A.$\sqrt{3}$B.2C.1+$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知全集U=R,集合A={x|1<2x-1<5},B={y|y=($\frac{1}{2}$)x,x≥-2}.
(1)求(∁UA)∩B;
(2)若集合C={x|a-1<x-a<1},且C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某同学为实现“给定正整数N,求最小的正整数i,使得7i>N,”设计程序框图如右,则判断框中可填入(  )
A.x≤NB.x<NC.x>ND.x≥N

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设实数x,y满足$\left\{\begin{array}{l}{y≤2x-2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则$\frac{y-1}{x+3}$的取值范围是(  )
A.(-∞,$\frac{1}{5}$]B.[-$\frac{1}{5}$,1]C.(-$\frac{1}{5}$,$\frac{1}{3}$]D.($\frac{1}{3}$,1]

查看答案和解析>>

同步练习册答案