分析 (1)推导出AB⊥CD,DC⊥BC,由此能证明DC⊥平面ABC.
(2)三棱锥A-BFE的体积VA-BFE=VF-ABE=$\frac{1}{3}×EF×{S}_{△ABE}$,由此能求出结果.
解答 证明:(1)在图甲中,∵AB=BD,且∠A=45°,
∴∠ADB=45°,∠ABC=90°,即AB⊥BD.
在图乙中,∵平面ABD⊥平面BDC,
且平面ABD∩平面BDC=BD,
∴AB⊥底面BDC,∴AB⊥CD.
又∠DCB=90°,∴DC⊥BC,
∵AB∩BC=B,∴DC⊥平面ABC.
(2)∵CD=1,点E、F分别为棱AC、AD的中点,
∴EF∥CD,且EF=$\frac{1}{2}CD$=$\frac{1}{2}$,AB=BD=2,BC=$\sqrt{3}$,
S△ABE=$\frac{1}{2}{S}_{△ABC}$=$\frac{1}{2}×\frac{1}{2}×2×\sqrt{3}$=$\frac{\sqrt{3}}{2}$,
∵DC⊥平面ABC,∵EF⊥平面ABE,
∴三棱锥A-BFE的体积:
VA-BFE=VF-ABE=$\frac{1}{3}×EF×{S}_{△ABE}$=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{{\sqrt{3}}}{12}$.
点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{5}{9}$ | C. | $\frac{7}{9}$ | D. | $\frac{5}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $-\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 11 | B. | 9 | C. | 12 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com