精英家教网 > 高中数学 > 题目详情
18.如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(1)求证:DC⊥平面ABC;
(2)设CD=1,求三棱锥A-BFE的体积.

分析 (1)推导出AB⊥CD,DC⊥BC,由此能证明DC⊥平面ABC.
(2)三棱锥A-BFE的体积VA-BFE=VF-ABE=$\frac{1}{3}×EF×{S}_{△ABE}$,由此能求出结果.

解答 证明:(1)在图甲中,∵AB=BD,且∠A=45°,
∴∠ADB=45°,∠ABC=90°,即AB⊥BD.
在图乙中,∵平面ABD⊥平面BDC,
且平面ABD∩平面BDC=BD,
∴AB⊥底面BDC,∴AB⊥CD.
又∠DCB=90°,∴DC⊥BC,
∵AB∩BC=B,∴DC⊥平面ABC.
(2)∵CD=1,点E、F分别为棱AC、AD的中点,
∴EF∥CD,且EF=$\frac{1}{2}CD$=$\frac{1}{2}$,AB=BD=2,BC=$\sqrt{3}$,
S△ABE=$\frac{1}{2}{S}_{△ABC}$=$\frac{1}{2}×\frac{1}{2}×2×\sqrt{3}$=$\frac{\sqrt{3}}{2}$,
∵DC⊥平面ABC,∵EF⊥平面ABE,
∴三棱锥A-BFE的体积:
VA-BFE=VF-ABE=$\frac{1}{3}×EF×{S}_{△ABE}$=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{{\sqrt{3}}}{12}$.

点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,已知行车道总宽度|AB|=6米,那么车辆通过隧道的限制高度是多少米?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=3$,$|\overrightarrow{BC}|=4$,O为△ABC的内心,且$\overrightarrow{AO}=λ\overrightarrow{AB}+μ\overrightarrow{BC}$,则λ+μ=(  )
A.$\frac{3}{4}$B.$\frac{5}{9}$C.$\frac{7}{9}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,已知中心在坐标原点的椭圆C,F1,F2 分别为椭圆的左、右焦点,右顶点到右准线的距离为2,离心率为$\frac{1}{2}$.过椭圆的左焦点F1 任意作一条直线l 与椭圆交于A,B 两点.设A(x1,y1),B(x2,y2).
(1)求椭圆C的标准方程;
(2)当直线l 的斜率k=1 时,求三角形ABF2 的面积;
(3)当直线l 绕F1 旋转变化时,求三角形ABF2 的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=(x+b)lnx,g(x)=alnx+$\frac{1-a}{2}{x^2}$-x(a≠1),已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(1)求b的值;
(2)若对任意x≥1,都有g(x)>$\frac{a}{a-1}$,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平面直角坐标系中,角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点$P(-\sqrt{3},-1)$,则sinα=(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆长轴长为4,焦点 F1(-1,0),F2(1,0),求椭圆标准方程和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆x2+(m+3)y2=m,(m>0)的离心率$e=\frac{{\sqrt{3}}}{2}$,求m的值及椭圆长轴、焦点坐标、顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,矩形长为5,宽为3,在矩形内随机撒100颗黄豆,数得落在椭圆内的黄豆数为60颗,以此实验数据为依据可以估算椭圆的面积约为(  )
A.11B.9C.12D.10

查看答案和解析>>

同步练习册答案