精英家教网 > 高中数学 > 题目详情
5.如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=4,
C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.F为PB中点.
(1)求证:EF∥面ABC;
(2)求证:EF⊥面PAC;
(3)求三棱锥B-PAC的体积.

分析 (1)欲证EF∥面ABC,根据直线与平面平行的判定定理可知只需证EF与面ABC内一直线平行即可,根据中位线可知EF∥BC,又BC?面ABC,EF?面ABC,满足定理所需条件;
(2)欲证EF⊥PC,可先证EF⊥面PAC,根据直线与平面垂直的判定定理可知只需证EF与面PAC内两相交直线垂直,而PA⊥面ABC,BC?面ABC,则BC⊥PA,而AB是⊙O的直径,则BC⊥AC,又PA∩AC=A,则BC⊥面PAC,满足定理条件;
(3)根据PA⊥面ABC,则PA即为三棱锥B-PAC的高,将三棱锥B-PAC的体积转化成三棱锥P-ABC的体积,根据锥体的体积公式进行求解即可.

解答 (1)证明:在△PBC中,∵E,F分别为PC,PB中点,∴EF∥BC,
又∵BC?面ABC,EF?面ABC,∴EF∥面ABC;
(2)证明:∵PA⊥面ABC,BC?面ABC,∴BC⊥PA,
∵AB是⊙O的直径,∴BC⊥AC,
又∵PA∩AC=A,∴BC⊥面PAC.
∵EF∥BC,∴EF⊥面PAC,
∵PC?面PAC,∴EF⊥PC;
(3)解:在Rt△ABC中,AC=BC=2$\sqrt{2}$,∴△ABC的面积S=$\frac{1}{2}×2\sqrt{2}×2\sqrt{2}$=4,
∵PA⊥面ABC,PC与⊙O所在的平面成45°角,
∴PA=2$\sqrt{2}$,∴VB-PAC=VP-ABC=$\frac{1}{3}×4×2\sqrt{2}$=$\frac{8\sqrt{2}}{3}$.

点评 本题主要考查直线与平面平行的判定,以及空间两直线的位置关系的判定和三棱锥的体积的计算,体积的求解在最近两年高考中频繁出现,值得重视.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.命题“对任意实数x,x>0”的否定是?x∈R,x≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=-1+tsinα}\end{array}\right.$(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:$ρ=2\sqrt{3}cosθ$.
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,B,点M(-1,-1),求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l的方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,曲线C的方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)把直线l和曲线C的方程分别化为直角坐标方程和普通方程;
(2)求曲线C上的点到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4(m∈R)
(1)试判断直线l是否过定点,若过定点,则求出定点,不过,则说明理由;
(2)证明:不论m取什么实数,直线l与圆C恒相交;
(3)求圆C截直线l所得的弦长的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求解齐次线性方程组:$\left\{\begin{array}{l}{{x}_{1}+2{x}_{2}+2{x}_{3}+{x}_{4}=0}\\{2{x}_{1}+{x}_{2}-2{x}_{3}-2{x}_{4}=0}\\{{x}_{1}-{x}_{2}-4{x}_{3}-3{x}_{4}=0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,AD⊥BC,垂足为D,AD在△ABC的内部,且BD:DC:AD=2:3:6,则∠BAC的大小为(  )
A.$\frac{3π}{4}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{3π}{4}$或$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点A(2,3,5)关于坐标平面xOy的对称点B的坐标是(  )
A.(2,3,-5)B.(2,-3,5)C.(-2,3,5)D.(-2,-3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.二次函数y=x2+bx+c的图象向左平移3个单位,再向上平移2个单位,得到二次函数y=x2-2x+1的图象,则c=14.

查看答案和解析>>

同步练习册答案