【题目】甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试.甲笔试与面试通过的概率分别为0.8,0.5,乙笔试与面试通过的概率分别为0.8,0.4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响.
(1)求这两人至少有一人通过笔试的概率;
(2)求这两人笔试都通过却都未被录用的概率;
(3)记这两人中最终被录用的人数为X,求X的分布列和数学期望.
【答案】(1)0.96;(2)0.192;(3)分布列见解析,数学期望0.72
【解析】
(1)利用独立事件与对立事件的概率公式求解即可;(2)直接利用独立事件的概率公式求解即可;(3)X可取0,1,2, 利用独立事件与对立事件的概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.
(1)设“这两人至少有一人通过笔试”为事件A,
则P(A)=1P()=1 (10.8)2=0.96.
(2)设“这两人笔试都通过却都未被录用”为事件B,
则P(B)=0.82×(10.5)×(10.4)=0.192.
(3)甲、乙两人被录用的概率分别为0.8×0.5=0.4,0.8×0.4=0.32.
由题意可得X可取0,1,2,则
P(X=0)=(10.4)×(10.32)=0.408,
P(X=1)=(10.4)×0.32+0.4×(10.32)=0.464,
P(X=2)=0.4×0.32=0.128,
所以X的分布列为
X | 0 | 1 | 2 |
P | 0.408 | 0.464 | 0.128 |
故E(X)=0×0.408+1×0.464+2×0.128=0.72.
科目:高中数学 来源: 题型:
【题目】现有10名教师,其中男教师6名,女教师4名.
(1)现要从中选2名去参加会议,有多少种不同的选法?
(2)选出2名男教师或2名女教师去外地学习的选法有多少种?
(3)现要从中选出男、女老师各2名去参加会议,有多少种不同的选法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的左右焦点分别为,,实轴长为6,渐近线方程为,动点在双曲线左支上,点为圆上一点,则的最小值为
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面为菱形,,平面,、分别是、上的中点,直线与平面所成角的正弦值为,点在上移动.
(Ⅰ)证明:无论点在上如何移动,都有平面平面;
(Ⅱ)求点恰为的中点时,二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋里装有大小相同的5个小球,其中红色两个,其余3个颜色各不相同现从中任意取出3个小球,其中恰有2个小球颜色相同的概率是______;若变量X为取出的三个小球中红球的个数,则X的数学期望______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某地区足球特色学校的发展状况,某调查机构得到如下统计数据:
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
足球特色学校y(百个) | 0.30 | 0.60 | 1.00 | 1.40 | 1.70 |
(1)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性强弱(已知:则认为与线性相关性很强;,则认为与线性相关性一般,,则认为y与x线性相关性较弱)
(2)求y与x的线性回归方程,并预测该地区2019年足球特色学校的个数(精确到个位)
参考公式:
;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆过点.
(1)求椭圆的方程,并求其离心率;
(2)过点作轴的垂线,设点为第四象限内一点且在椭圆上(点不在直线上),点关于的对称点为,直线与交于另一点.设为原点,判断直线与直线的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com