精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,等腰△ABC的底边AB=6
6
,高CD=3,点E是线段BD上异于点B,D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AC,记BE=x,V(x)表示四棱锥P-ACFE的体积.
(1)求V(x)的表达式;
(2)当x为何值时,V(x)取得最大值?
(3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值.
分析:(1)先求底面面积,再求出高,即可求V(x)的表达式;
(2)利用导数,来求V(x)的最大值,
(3)过F作MF∥AC交AD于M,得到异面直线所成的角,然后求异面直线AC与PF所成角的余弦值.
解答:解:(1)由折起的过程可知,PE⊥平面ABC,
S△ABC=9
6
S△BEF=
x2
54
S△BDC=
6
12
x2

V(x)=
6
3
x(9-
1
12
x2)
0<x<3
6


(2)V′(x)=
6
3
(9-
1
4
x2)
,所以x∈(0,6)时,v'(x)>0,V(x)单调递增;
6<x<3
6
时v'(x)<0,V(x)单调递减;
因此x=6时,V(x)取得最大值12
6

(3)过F作MF∥AC交AD与M,
BM
AB
=
BF
BC
=
BE
BD
=
BE
1
2
AB
,MB=2BE=12
精英家教网
PM=6
2
MF=BF=PF=
6
3
6
BC=
6
3
54+9
=
42

在△PFM中,cos∠PFM=
84-72
84
=
1
7

∴异面直线AC与PF所成角的余弦值为
1
7
点评:本题考查几何体的体积,导数的应用,异面直线所成的角,考查空间想象能力、逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系中,定点A(2,π),动点B在直线ρsin(θ+
π
4
)=
2
2
上运动,则线段AB的最精英家教网短长度为
 

(不等式选讲选做题)设函数f(x)=|x-1|+|x-2|,则f(x)的最小值为
 

(几何证明选讲选做题) 如图所示,等腰三角形ABC的底边AC长为6,其外接圆的半径长为5,则三角形ABC的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,等腰△ABC的底边AB=6
6
,高CD=3,点E是线段BD上异于点B、D的动点,点F在BC边上,且EF⊥AB,现沿EF将△BEF折起到△PEF的位置,使PE⊥AE,记BE=x,V(x)表示四棱柱P-ACFE的体积.
(1)求证:面PEF⊥面ACFE;
(2)求V(x)的表达式,并求当x为何值时V(x)取得最大值?

查看答案和解析>>

科目:高中数学 来源:2013届福建师大附中高二下学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分12分) 如图所示,等腰△ABC的底边AB=,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记BE=x,V(x)表示四棱锥P-ACFE的体积.

(Ⅰ)求V(x)的表达式;   

(Ⅱ)当x为何值时,V(x)取得最大值?

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省高三第三次月考理科数学(重点班)(解析版) 题型:解答题

如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的体积.

(Ⅰ)求 的表达式;

(Ⅱ)当x为何值时,取得最大值?

(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值

 

查看答案和解析>>

同步练习册答案