【题目】[选修4-4:坐标系与参数方程]
在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,正方形的边长为2,,分别为的中点,与交于点,将沿折起到的位置,使平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判断线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的短轴长为,离心率为。
(1)求椭圆的标准方程;
(2)设椭圆的左,右焦点分别为,左,右顶点分别为,,点,,为椭圆上位于轴上方的两点,且,记直线,的斜率分别为,,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司推出一新款手机,因其功能强大,外观新潮,一上市便受到消费者争相抢购,销量呈上升趋势.散点图是该款手机上市后前6周的销售数据.
(1)根据散点图,用最小二乘法求关于的线性回归方程,并预测该款手机第8周的销量;
(2)为了分析市场趋势,该公司市场部从前6周的销售数据中随机抽取2周的数据,记抽取的销量在18万台以上的周数为,求的分布列和数学期望.参考公式:回归直线方程,其中:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入的分别为16,20,则输出的( )
A. 0B. 2C. 4D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)在图中作出函数y =的图象,并求出其与直线围成的封闭图形的面积;
(Ⅱ)若g(x)=|2x-a|+|x-1|.当+g(x)≥3对一切实数x恒成立,求实数a的范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线()与双曲线(,)有相同的焦点,点是两条曲线的一个交点,且轴,则该双曲线经过一、三象限的渐近线的倾斜角所在的区间是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中,,,且,点是中点,现将沿折起,使点到达点的位置.
(Ⅰ)求证:平面平面;
(Ⅱ)若与平面所成的角为,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com