精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.

【答案】(Ⅰ)普通方程为.直角坐标方程为;(Ⅱ).

【解析】

(Ⅰ)根据参普互化的公式,以及极坐标和直角坐标互化的公式得到结果;(Ⅱ)通过分析临界情况,即直线和圆的相切的情况,进而得到满足有2个交点是直线的倾斜角的范围.

(Ⅰ)当时,直线的参数方程为.

所以其普通方程为.

对于曲线,由,得

所以其直角坐标方程为.

(Ⅱ)由题意得,直线过定点为其倾斜角,曲线,表示以为圆心,以1为半径的圆.

时,直线,此时直线与圆不相交.

时,设表示直线的斜率,则.

设圆心到直线的距离为.

当直线与圆相切时,令,解得.

则当直线与圆有两个不同的交点时,.

因为,由,可得

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方形的边长为2分别为的中点,交于点,将沿折起到的位置,使平面平面

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)判断线段上是否存在点,使平面?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率为

(1)求椭圆的标准方程;

(2)设椭圆的左,右焦点分别为左,右顶点分别为,点,为椭圆上位于轴上方的两点,且,记直线的斜率分别为,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司推出一新款手机,因其功能强大,外观新潮,一上市便受到消费者争相抢购,销量呈上升趋势.散点图是该款手机上市后前6周的销售数据.

(1)根据散点图,用最小二乘法求关于的线性回归方程,并预测该款手机第8周的销量;

(2)为了分析市场趋势,该公司市场部从前6周的销售数据中随机抽取2周的数据,记抽取的销量在18万台以上的周数为,求的分布列和数学期望.参考公式:回归直线方程,其中:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.

(1)求椭圆的方程;

(2)证明:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入的分别为16,20,则输出的( )

A. 0B. 2C. 4D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)在图中作出函数y =的图象,并求出其与直线围成的封闭图形的面积

(Ⅱ)若g(x)=|2x-a|+|x-1|.当+g(x)≥3对一切实数x恒成立,求实数a的范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)与双曲线)有相同的焦点,点是两条曲线的一个交点,且轴,则该双曲线经过一、三象限的渐近线的倾斜角所在的区间是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,,且,点中点,现将沿折起,使点到达点的位置.

(Ⅰ)求证:平面平面

(Ⅱ)若与平面所成的角为,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案