精英家教网 > 高中数学 > 题目详情

已知圆,点,直线.
 
(1)求与圆相切,且与直线垂直的直线方程;
(2)在直线上(为坐标原点),存在定点(不同于点),满足:对于圆上的任一点,都有为一常数,试求出所有满足条件的点的坐标.

(1)(2)见解析

解析试题分析:(1)根据所求直线与已知直线垂直,可设出直线方程,再根据直线与圆相切,所以有(其中表示圆心到直线的距离),可得到直线方程;
(2)方法一:假设存在这样的点,由于的位置不定,所以首先考虑特殊位置,①为圆轴左交点或②为圆轴右交点这两种情况,由于对于圆上的任一点,都有为一常数,所以①②两种情况下的相等, 可得到,然后证明在一般的下, 为一常数.
方法二:设出,根据对于圆上的任一点,都有为一常数,设出以及该常数,通过,代入的坐标化简,转化为恒成立问题求解.
试题解析:(1)已知直线变形为为,因为所求直线与已知直线垂直,
所以设所求直线方程为,即.
由直线与圆相切,可知,其中表示圆心到直线的距离,
,得,故所求直线方程为
(2)假设存在这样的点
为圆轴左交点时,
为圆轴右交点时,
依题意,,解得(舍去),或.
下面证明:点对于圆上任一点,都有为一常数.
,则.

从而为常数.
方法2:假设存在这样的点,使得为常数,则
于是,由于在圆上,所以,代入得,

恒成立,
所以 ,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆C过点P(1,1),且与圆M:(x+2)2+(x+2)2=r2(r>0)2关于直线x+y+2=0对称.
⑴求圆C的方程;
⑵设Q为圆C上的一个动点,求的最小值;
⑶过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,以O为圆心的圆与直线相切.
(1)求圆O的方程;
(2)圆O与轴相交于两点,圆内的动点满足
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比为;③圆心到直线的距离为的圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.
(1)求圆的方程;
(2)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一动圆截直线和直线所得弦长分别为,求动圆圆心的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的方程为:x2+y2-2mx-2y+4m-4=0.(m∈R).
(1)试求m的值,使圆C的面积最小;
(2)求与满足(1)中条件的圆C相切,且过点(1,-2)的直线方程.

查看答案和解析>>

同步练习册答案