精英家教网 > 高中数学 > 题目详情
方程表示曲线,给出以下命题:
①曲线不可能为圆;
②若,则曲线为椭圆;
③若曲线为双曲线,则
④若曲线为焦点在轴上的椭圆,则.
其中真命题的序号是_____(写出所有正确命题的序号).
③④

试题分析:根据题意,①曲线不可能为圆;若C表示圆,应该满足4-t=t-1>0则t=,错误
②若,则曲线为椭圆;则有,错误
③若曲线为双曲线,则;(4-k)(k-1)<0即t>4或t<1 故=对
④若曲线为焦点在轴上的椭圆,则.成立,故填写③
点评:考查了圆锥曲线的方程的形式,属于基础题。关键是对于方程的表示中分母中参数的范围表示。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,
|PF2|= , PF1⊥F1F2.        
(1)求椭圆C的方程;(6分)
(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线顶点为坐标原点,对称轴为x轴,焦点在3x-4y-12=0上,那么抛物线方程是(  )
A.y=16xB.y=-16xC.y=12xD.y=-12x

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率是,则双曲线的渐近线方程是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且的周长为,求椭圆的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点的距离为到直线的距离为,求证:为定值;
 
(3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,),试用表示;并求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两定点,动点在直线上移动,椭圆为焦点且经过点,记椭圆的离心率为,则函数的大致图像是(   )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点是椭圆的右焦点,点分别是轴、
轴上的动点,且满足.若点满足
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交
于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C的两个焦点为F1F2,点B1为其短轴的一个端点,满足

(1)求椭圆C的方程;
(2)过点M 做两条互相垂直的直线l1l2l1与椭圆交于点ABl2与椭圆交于点CD,求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆的中心在原点,焦点在轴上,短轴的一个端点与左右焦点组成一个正三角形,焦点到椭圆上的点的最短距离为.
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,线段的中点为,求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案