精英家教网 > 高中数学 > 题目详情

【题目】设命题p:实数x满足 <0,其中a>0,命题q:实数x满足
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

【答案】
(1)解:命题p:a=1时,由 <0,化为:(x﹣1)(x﹣3)<0,解得1<x<3.

命题q:实数x满足

化为: ,解得 ,解得2<x<3.

∵p∧q为真,∴ ,解得2<x<3.

∴实数x的取值范围是(2,3)


(2)解:由(1)可得:命题q:实数x满足:2<x<3.

命题p:实数x满足 <0,其中a>0,化为(x﹣a)(x﹣3a)<0,解得a<x<3a.

∵¬p是¬q的充分不必要条件,

∴q是p的充分不必要条件,

,且等号不能同时成立,解得1≤a≤2.

∴实数a的取值范围是[1,2]


【解析】(1)命题p:a=1时,由 <0,化为:(x﹣1)(x﹣3)<0,解出即可得出.命题q:实数x满足 ,化为: ,解得x范围.由p∧q为真,可得命题p与q都为真命题.(2)由(1)可得:命题q:实数x满足:2<x<3.命题p:实数x满足 <0,其中a>0,化为(x﹣a)(x﹣3a)<0,解得x范围.由¬p是¬q的充分不必要条件,可得q是p的充分不必要条件,即可得出.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调区间;

(2)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取人做调查,得到如下列联表:

已知在这人中随机抽取一人抽到喜欢游泳的学生的概率为

(Ⅰ)请将上述列联表补充完整,并判断是否有%的把握认为喜欢游泳与性别有关?并说明你的理由;

(Ⅱ)针对问卷调查的名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取人成立游泳科普知识宣传组,并在这人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率,参考公式: ,其中.参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆锥曲线C的极坐标方程为ρ2= ,F1是圆锥曲线C的左焦点.直线l: (t为参数).
(1)求圆锥曲线C的直角坐标方程和直线l的直角坐标方程;
(2)若直线l与圆锥曲线C交于M,N两点,求|F1M|+|F1N|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆心在直线2x-3y-1=0上的圆与x轴交于A(1,0),B(3,0)两点,则圆的方程为( )
A.(x-2)2+(y+1)2=2
B.(x+2)2+(y-1)2=2
C.(x-1)2+(y-2)2=2
D.(x-2)2+(y-1)2=2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣lnx.
(1)求函数y=f(x)的单调区间;
(2)设g(x)=x﹣t,若函数h(x)=g(x)﹣f(x)在[ ,e]上(这里e≈2.718)恰有两个不同的零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线在点处的切线;

(2)若函数在其定义域内为增函数,求正实数的取值范围;

(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市规定,高中学生三年在校期间参加不少于小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段

(单位:小时)进行统计,其频率分布直方图如图所示.

)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计

从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;

)从全市高中学生(人数很多)中任意选取3位学生,3位学生中参加社区服务时间不少于90小时的人数.试求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斜三棱柱ABC﹣A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1 , 则A1B的长度为

查看答案和解析>>

同步练习册答案