精英家教网 > 高中数学 > 题目详情
《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?
 
.(只需写出一个答案即可)
考点:进行简单的合情推理
专题:推理和证明
分析:根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.
解答: 解:我们首先需要先求出三个数:
第一个数能同时被3和5整除,但除以7余1,即15;
第二个数能同时被3和7整除,但除以5余1,即21;
第三个数能同时被5和7整除,但除以3余1,即70;
然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.
最后,再减去3、5、7最小公倍数的整数倍,可得:233-105×2=23.或105k+23(k为正整数).
故答案为:23,或105k+23(k为正整数).
点评:本题考查的是带余数的除法,简单的合情推理的应用,根据题意下求出15、21、70这三个数是解答此题的关键.[可以原文理解为:三个三个的数余二,七个七个的数也余二,那么,总数可能是三乘七加二,等于二十三.二十三用五去除余数又恰好是三]
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

春节过后购物旺季随之转向淡季,商家均采用各种促销方法促销,某商场规定:凡购物均可获得一次抽奖机会,抽奖方法为:从编号1-6的相同小球中任意抽取一个小球记下编号后放回,若抽到编号为6的小球则再获一次机会,最多抽取二次.
(1)求顾客恰有两次抽奖机会的概率;
(2)若抽得小球编号之和大于10为中奖,求中奖概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-(1+a)x-1
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当a<1时,证明:对任意的x∈(0,+∞),有f(x)<-
lnx
x
-a(x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

x+y≤5
2x+y≤6
(x≥0,y≥0),则目标函数k=6x+8y取最大值时点的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex+x2+x+1与g(x)的图象关于直线2x-y-3=0对称,P,Q分别是函数f(x),g(x)图象上的动点,则|PQ|的最小值为(  )
A、
5
5
B、
5
C、
2
5
5
D、2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设F为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点,若双曲线与渐近线在第一象限分别存在点PQ.使得P为QF的中点,则双曲线离心率的取值范围为(  )
A、(1,2)
B、(2,+∞
C、(1,
2
D、(
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
an
an+2
=
1
2
an+1(n∈N+),a1=1
(1)求证:数列{
1
an
}是等差数列;
(2)设bn表示数列{an}在区间((
1
2
n,(
1
2
n-1]上的项的个数,试求数列{
bn
an
}的前n项和Sn,并求关于n的不等式Sn<2013最大正整数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场根据甲、乙两种不同品牌的洗衣粉在周一至周五每天的销量绘成如图所示的茎叶图,若两种品牌销量的平均数为
.
x
.
x
,方差为S2与S2,则(  )
A、
.
x
.
x
,s2<S2
B、
.
x
.
x
,S2<S2
C、
.
x
.
x
,S2>S2
D、
.
x
.
x
,S2>S2

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次满分为160分的数学考试中,某班40名学生的考试成绩分布如下:
成绩(分)80分以下[80,100)[100,120)[120,140)[140,160]
人数8812102
在该班随机抽取一名学生,则该生在这次考试中成绩在120分以上的概率为
 

查看答案和解析>>

同步练习册答案