精英家教网 > 高中数学 > 题目详情
6.已知△ABC的内角A,B,C的对边分别为a,b,c,且(2a-c)cosB=bcosC.
(1)求sinB的值;
(2)若$b=\sqrt{7}$,求△ABC的周长的最大值.

分析 (1)由正弦定理,两角和的正弦函数公式,三角形内角和定理化简已知等式可得2sinAcosB=sinA,由sinA≠0,可求cosB,进而利用同角三角函数基本关系式可求sinB的值.
(2)由已知利用余弦定理,基本不等式可求${(a+c)^2}-7=3ac≤3{(\frac{a+c}{2})^2}$,解得$a+c≤2\sqrt{7}$,即可得解△ABC的周长的最大值.

解答 (本题满分12分)
解:(1)由正弦定理得:2sinAcosB-sinCcosB=sinBcosC,
 所以:2sinAcosB=sin(B+C)=sinA,
因为sinA≠0,
 所以cosB=$\frac{1}{2}$sinB=$\frac{{\sqrt{3}}}{2}$…(6分)
(2)因为b2=a2+c2-2accosBb2=(a+c)2-3ac=7,
所以${(a+c)^2}-7=3ac≤3{(\frac{a+c}{2})^2}$,…(10分)
所以$a+c≤2\sqrt{7}$,
故$2\sqrt{7}$<$a+b+c≤3\sqrt{7}$.…(12分)

点评 本题主要考查了正弦定理,两角和的正弦函数公式,三角形内角和定理,同角三角函数基本关系式,余弦定理,基本不等式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-2|.
(1)若对任意的a,b,c∈R(a≠c),不等式$\frac{1}{2}$f(m)≤$\frac{|a-b|+|c-d|}{|a-c|}$恒成立,求实数m的最大值;
(2)在(1)的条件下,解不等式f(x)≤2-|x-m|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={0,2,4,6},B={x∈N|2x≤33},则集合A∩B的子集个数为(  )
A.6B.7C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\frac{cos(x-\frac{π}{2})}{sin(\frac{7π}{2}+x)}$•cos(π-x).
(1)化简f(x)的表达式;
(2)若f(α)=-$\frac{5}{13}$,求cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列三个命题:
①函数y=log2(x2-5x+6)的单调增区间是($\frac{5}{2}$,+∞)
②经过任意两点的直线,都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示;
③命题p:“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x${\;}_{0}^{2}$-x0-1>0”,
其中正确命题的个数有(  )个.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$与x轴负半轴交于点A,P为椭圆第一象限上的点,直线OP交椭圆于另一点Q,椭圆的左焦点为F,若直线PF平分线段AQ,则椭圆的离心率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设F为抛物线y2=4x的焦点,A,B,C为该抛物线上不同的三点,$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow 0$,O为坐标原点,且△OFA、△OFB、△OFC的面积分别为S1、S2、S3,则$S_1^2+S_2^2+S_3^2$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知i是虚数单位,$\frac{1-z}{1+z}$=2i,则|z|等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\sqrt{2}sin({2x+φ})({-π<φ<0})$图象的一条对称轴是直线$x=\frac{π}{8}$且f(0)<0,
(1)求φ;
(2)求f(x)的单调递减区间;
(3)求f(x)在$[{0,\frac{π}{2}}]$上的值域.

查看答案和解析>>

同步练习册答案