精英家教网 > 高中数学 > 题目详情
18.某工厂在两年内生产产值的月增长率都是a,则第二年某月的生产产值与第一年相应月相比增长了(1+a)12-1.

分析 根据条件分别求出二年某月的生产产值,进行求解即可.

解答 解:不妨设第一年1月份的生产产值为b,则2月份的生产产值是b(1+a),3月份的生产产值是b(1+a)2,依此类推,到第二年1月份就是第一年1月份后的第12个月,故第二年1月份的生产产值是b(1+a)12
故第二年某月的生产产值与第一年相应月相比增长了$\frac{b(1+a)^{12}-b}{b}$=(1+a)12-1.
故答案为:(1+a)12-1

点评 本题主要考查数列的应用问题,根据条件建立方函数关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{(\frac{1}{2})^{x},x<0}\end{array}\right.$,则f[f(-4)]=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若双曲线$\frac{x^2}{a^2}-{y^2}=1({a>0})$的一个焦点为(2,0),则a为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,已知AB=3,BC=4,AC=$\sqrt{13}$.
(1)求角B的大小;
(2)若D是BC的中点,求中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下面各组函数中为相同函数的是(  )
A.$f(x)=\sqrt{{{(x-1)}^2}},g(x)=x-1$B.f(x)=x0,g(x)=1
C.$f(x)={3^x},g(x)={(\frac{1}{3})^{-x}}$D.$f(x)=x-1,g(x)=\frac{{{x^2}-1}}{x+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga(1-x)+loga(3+x)(0<a<1)
(1)求函数f(x)的定义域;
(2)若函数f(x)的最小值为-4,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-(a+1)x+1(a∈R)
(1)若关于x的不等式f(x)>0的解集为R,求实数a的取值范围;
(2)若关于x的不等式f(x)≤0的解集为P,集合Q={x|0≤x≤1},若P∩Q=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(  )
A.(x-1)2+y2=1B.(x-1)2+y2=4C.(x-1)2+y2=2D.(x-1)2+y2=$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某学校为调查高三年学生的身高情况,按随机抽样的方法抽取80名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在170~175cm的男生人数有16人.

(Ⅰ)试问在抽取的学生中,男、女生各有多少人?
(Ⅱ)在上述80名学生中,从身高在170~175cm之间的学生中按男、女性别分层抽样的方法,抽出5人,从这5人中选派3人当旗手,求3人中恰好有一名女生的概率.

查看答案和解析>>

同步练习册答案