精英家教网 > 高中数学 > 题目详情
13.已知曲线C的参数方程是$\left\{\begin{array}{l}x=2cosθ\\ y=sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A,B的极坐标分别为A(2,π),$B(2,\frac{4π}{3})$.
(Ⅰ)求直线AB的直角坐标方程;
(Ⅱ)设M为曲线C上的动点,求点M到直线AB距离的最大值.

分析 (Ⅰ)由x=ρcosθ,y=ρsinθ,可得A,B的直角坐标,求得AB的斜率,由点斜式方程可得直线方程;
(Ⅱ)运用点到直线的距离公式,结合三角函数的辅助角公式,由正弦函数的值域,即可得到所求最大值.

解答 解:(Ⅰ) 将A、B化为直角坐标为A(2cosπ,2sinπ)、$B(2cos\frac{4π}{3},2sin\frac{4π}{3})$,
即A、B的直角坐标分别为A(-2,0)、$B(-1,-\sqrt{3})$,
即有${k_{AB}}=\frac{{-\sqrt{3}-0}}{-1+2}=-\sqrt{3}$,
可得直线AB的方程为$y-0=-\sqrt{3}(x+2)$,
即为$\sqrt{3}x+y+2\sqrt{3}=0$.
(Ⅱ)设M(2cosθ,sinθ),
它到直线AB距离$d=\frac{{|2\sqrt{3}cosθ+sinθ+2\sqrt{3}|}}{2}$
=$\frac{{|\sqrt{13}sin(θ+φ)+2\sqrt{3}|}}{2}$,(其中$tanφ=2\sqrt{3}$)
当sin(θ+φ)=1时,d取得最大值,
可得${d_{max}}=\frac{{\sqrt{13}+2\sqrt{3}}}{2}$.

点评 本题考查直角坐标和极坐标的互化,直线方程的求法和运用,同时考查三角函数的辅助角公式和正弦函数的值域的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知O为坐标原点,点A的坐标为(3,-4),将线段OA绕点O逆时针旋转$\frac{π}{2}$至OB,则点B的纵坐标为(  )
A.-4B.-3C.3D.4

查看答案和解析>>

科目:高中数学 来源:2015-2016学年江苏泰兴中学高二上学期期末数学(文)试卷(解析版) 题型:解答题

根据统计资料,某工艺品厂的日产量最多不超过20件根据统计资料,每日产品废品率与日产量(件)之间近似地满足关系式(日产品废品率=×100%) .已知每生产一件正品可赢利2千元,而生产一件废品则亏损1千元.(该车间的日利润日正品赢利额日废品亏损额)

(1)将该车间日利润(千元)表示为日产量(件)的函数;

(2)当该车间的日产量为多少件时,日利润最大?最大日利润是几千元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数y=ax3+bx2,当x=1时,函数有极大值3
(1)求a,b的值
(2)求函数y的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,扇形AOB是一个植物园的平面示意图,其中∠AOB=$\frac{2π}{3}$,半径OA=OB=1km,为了便于游客观赏,拟在圆内铺设一条从入口A到出口B的观赏道路,道路由弧$\widehat{AC}$,线段CD,线段DE和弧$\widehat{EB}$组成,且满足:$\widehat{AC}$=$\widehat{EB}$,CD∥AO.DE∥OB,OD∈[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{6}}{3}$](单位:km),设∠AOC=θ.
(1)用θ表示CD的长度,并求出θ的取值范围;
(2)当θ为何值时,观赏道路最长?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是定义在R上的偶函数,当x≥0时.f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,0≤x≤2}\\{f(x-1),x>2}\end{array}\right.$,若函数g(x)=f(x)-k(x-1)恰有4个不同的零点,则实数k的取值范围是(  )
A.[-$\frac{3}{4}$,-$\frac{3}{5}$)∪($\frac{3}{5}$,$\frac{3}{4}$]B.[-1,-$\frac{3}{4}$)∪($\frac{3}{4}$,1]C.($\frac{3}{5}$,$\frac{3}{4}$]D.[-$\frac{3}{4}$,-$\frac{3}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,粗线画出的是一个正方体被两个平行平面所截后的几何体的三视图,图中三个正方形的边长为4,则此几何体的表面积为(  )
A.40+8$\sqrt{3}$B.48+8$\sqrt{3}$C.40+16$\sqrt{3}$D.48+16$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器--商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为(  )
A.1.2B.1.6C.1.8D.2.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,且S3=6,S5=15.
(1)求数列{an}的通项公式;
(2)令bn=2an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案