精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,抛物线C)的焦点为

1)动直线lF点且与抛物线C交于MN两点,点My轴的左侧,过点M作抛物线C准线的垂线,垂足为M1,点E上,且满足连接并延长交y轴于点D的面积为,求抛物线C的方程及D点的纵坐标;

2)点H为抛物线C准线上任一点,过H作抛物线C的两条切线,,切点为AB,证明直线过定点,并求面积的最小值.

【答案】1;(04)(2)证明见解析,面积最小值为4

【解析】

(1)由焦点坐标,可得抛物线的方程,,由向量共线定理可得,求得M的坐标,代入抛物线方程可得,即可求解;

2))设点,根据导数的几何意义,求得抛物线在A, B处的切线的方程,由两点确定一直线可得AB的方程,进而得到恒过定点F,再讨论t=0, ,写出即可求最值.

1)因为,所以抛物线C

因为

所以

又因为,推出

M在抛物线C上,

解得,故 D0,4

2)设点.

C

,得

所以抛物线C在点处的切线的方程为

因为

因为在切线上,

所以

同理②;

综合①②得,点的坐标满足方程

即直线恒过抛物线焦点.

时,此时,可知

时,此时直线的斜率为,得

于是,而

把直线代入C中,消去x

时,最小,且最小值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,.为邻边作平行四边形,连接.

1)求证:平面

2)线段上是否存在点,使平面与平面垂直?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是双曲线的左、右焦点,点P上异于顶点的点,直线l分别与以为直径的圆相切于AB两点,若向量的夹角为,则=___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,以x轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程与曲线的直角坐标方程;

2)设为曲线上位于第一,二象限的两个动点,且,射线交曲线分别于点.面积的最小值,并求此时四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知扇环如图所示,是扇环边界上一动点,且满足,则的取值范围为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,动圆与圆外切,且与直线相切,该动圆圆心的轨迹为曲线.

1)求曲线的方程

2)过点的直线与抛物线相交于两点,抛物线在点A的切线与交于点N,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,斜率为的直线交抛物线两点,已知点的横坐标比点的横坐标大4,直线交线段于点,交抛物线于点

1)若点的横坐标等于0,求的值;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆的左、右顶点分别为AB,右焦点为F,且点F满足,由椭圆C的四个顶点围成的四边形面积为.过点的直线TATB与此椭圆分别交于点,其中

1)求椭圆C的标准方程;

2)当T在直线时,直线MN是否过x轴上的一定点?若是,求出该定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆锥的顶点为,底面圆心为,半径为2,母线长为

1)求该圆锥的体积;

2)已知为圆锥底面的直径,为底面圆周上一点,且为线段的中点,求异面直线所成的角的大小.

查看答案和解析>>

同步练习册答案