精英家教网 > 高中数学 > 题目详情

【题目】某手机软件研发公司为改进产品,对软件用户每天在线的时间进行调查,随机抽取40名男性与20名女性对其每天在线的时间进行了调查统计,并绘制了如图所示的条形图,其中每天的在线时间4h以上(包括4h)的用户被称为资深用户

1)根据上述样本数据,完成下面的2×2列联表,并判定是否有95%的把握认为是否为资深用户与性别有关;

资深用户

资深用户

总计

男性

女性

总计

2)用样本估计总体,若从全体用户中随机抽取3人,设这3人中资深用户的人数为X,求随机变量X的分布列与数学期望.

附:,其中na+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

【答案】1)见解析,没有(2)见解析,0.9

【解析】

1)根据条形图中的信息,填写列联表,并计算的值,查表判断即可;

2的所有可能的取值分别为0123,从全体用户中随机抽每个“资深用户”被抽到的可能性为,故,求出每个对应的概率,列出分布列求期望即可.

解:(1)依题意,根据条形图中的信息,列联表如下:

“资深用户”

非“资深用户”

总计

男性

10

30

40

女性

8

12

20

总计

18

42

60

所以

故没有的把握认为是否为“资深用户”与性别有关;

(2)根据题意,从全体用户中随机抽每个“资深用户”被抽到的可能性为

所以的所有可能的取值分别为0,1,2,3,

所以随机变量的分布列为:

0

1

2

3

0.343

0.441

0.189

0.027

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,离心率为,右焦点到右顶点的距离为1.

(1)求椭圆的方程;

(2)过 的直线与椭圆交于不同的两点,,则的面积是否存在最大值?若存在,求出这个最大值及直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求曲线在点的切线方程;

2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当

①求函数在点处的切线方程;

②比较的大小;

2)当时,若对时,,且有唯一零点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.回归直线至少经过其样本数据中的一个点

B.从独立性检验可知有99%的把握认为吃地沟油与患胃肠癌有关系时,我们就说如果某人吃地沟油,那么他有99%可能患胃肠癌

C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高

D.将一组数据的每一个数据都加上或减去同一个常数后,其方差也要加上或减去这个常数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数f(x)的极值点的个数;

2)若f(x)有两个极值点证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.

1)求这个样本数据的中位数和众数;

2)从样本数据用时不超过分钟的工人中随机抽取个,求至少有一个工人是优秀员工的概率.

查看答案和解析>>

同步练习册答案