【题目】已知F1、F2分别是双曲线 ﹣ =1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为( )
A.
B.
C.
D.2
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的各项均为正数,且Sn= + +…+ ,S2= ,S3= .设[x]表示不大于x的最大整数(如[2.10]=2,[0.9]=0).
(1)试求数列{an}的通项;
(2)求T=[log21]+[log22]+[log23]+…+[log2( ﹣1)]+[log2( )]关于n的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ax2﹣2ax+b(a≠0)在闭区间[1,2]上有最大值0,最小值﹣1,则a,b的值为( )
A.a=1,b=0
B.a=﹣1,b=﹣1
C.a=1,b=0或a=﹣1,b=﹣1
D.以上答案均不正确
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P ABCD中,底面ABCD为平行四边形, ,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设AD=2, ,求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个盒子里装有标号为1,2,3,…,5的5张标签,现随机地从盒子里无放回地抽取两张标签.记X为两张标签上的数字之和.
(1)求X的分布列.
(2)求X的期望E(X)和方差D(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE= AD,
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工科院校对, 两个专业的男女生人数进行调查,得到如下的列联表:
专业 | 专业 | 总计 | |
女生 | 12 | 4 | 16 |
男生 | 38 | 46 | 84 |
总计 | 50 | 50 | 100 |
(Ⅰ)从专业的女生中随机抽取2名女生参加某项活动,其中女生甲被选到的概率是多少?
(Ⅱ)能否有95%的把握认为工科院校中“性别”与“专业”有关系?
附: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体ABCD﹣A1B1C1D1中,E、F分别是AA1、AB的中点,则EF与对角面A1C1CA所成角的度数是( )
A.30°
B.45°
C.60°
D.150°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com