【题目】如图, 为圆的直径,点, 在圆上, ,矩形和圆所在的平面互相垂直,已知, .
(Ⅰ)求证:平面平面;
(Ⅱ)当的长为何值时,二面角的大小为.
【答案】(1)见解析(2)
【解析】试题分析:(1)先根据面面垂直性质定理得平面,即得,再根据圆性质得,根据线面垂直判定定理得平面,,最后根据面面垂直判定定理得结论(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组求各面法向量,根据向量数量积求向量夹角,最后根据向量夹角与二面角关系建立方程,求出的长
试题解析:(Ⅰ)∵平面平面,
平面平面,∴平面,
∵平面,∴,
又∵为圆的直径,∴,∴平面,
∵平面,∴平面平面
(Ⅱ)
设中点为,以为坐标原点, 方向分别为轴、轴、轴方向建立空间直角坐标系(如图).设,则点的坐标为,则,又,∴,
设平面的法向量为,则,即,
令,解得.
∴.
由(1)可知平面,取平面的一个法向量为,
∴,即,解得,
因此,当的长为时,平面与平面所成的锐二面角的大小为60°。
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(, 为参数),曲线的极坐标方程为.
(1)将曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;
(2)若直线经过点,求直线被曲线截得的线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数图象上不同两点, 处切线的斜率分别是, ,规定(为线段的长度)叫做曲线在点与之间的“弯曲度”,给出以下命题:
①函数图象上两点与的横坐标分别为1和2,则;
②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
③设点, 是抛物线上不同的两点,则;
④设曲线(是自然对数的底数)上不同两点, ,且,若恒成立,则实数的取值范围是.
其中真命题的序号为__________.(将所有真命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市随机抽取一年(365天)内100天的空气质量指数(Air Pollution Index)的监测数据,结果统计如下:
大于300 | |||||||
空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中度重 污染 | 重度污染 |
天数 | 10 | 15 | 20 | 30 | 7 | 6 | 12 |
(Ⅰ)若本次抽取的样本数据有30天是在供暖季,其中有7天为重度污染,完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?
非重度污染 | 重度污染 | 合计 | |
供暖季 | |||
非供暖季 | |||
合计 | 100 |
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
附:
(Ⅱ)政府要治理污染,决定对某些企业生产进行管控,当在区间时企业正常生产;当在区间时对企业限产(即关闭的产能),当在区间时对企业限产,当在300以上时对企业限产,企业甲是被管控的企业之一,若企业甲正常生产一天可得利润2万元,若以频率当概率,不考虑其他因素:
①在这一年中随意抽取5天,求5天中企业被限产达到或超过的恰为2天的概率;
②求企业甲这一年因限产减少的利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题12分)如图,在海岸线一侧有一休闲游乐场,游乐场的前一部分边界为曲线段,该曲线段是函数,的图像,图像的最高点为.边界的中间部分为长千米的直线段,且.游乐场的后一部分边界是以为圆心的一段圆弧.
(1)求曲线段的函数表达式;
(2)曲线段上的入口距海岸线最近距离为千米,现准备从入口修一条笔直的景观路到,求景观路长;
(3)如图,在扇形区域内建一个平行四边形休闲区,平行四边形的一边在海岸线上,一边在半径上,另外一个顶点在圆弧上,且,求平行四边形休闲区面积的最大值及此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 ,其焦距为2,离心率为
(1)求椭圆的方程;
(2)设椭圆的右焦点为, 为轴上一点,满足,过点作斜率不为0的直线交椭圆于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )
A. 6 B. 8
C. 12 D. 18
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com