精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,离心率为,直线与椭圆C交于AB两点,且

(1)求椭圆C的方程.

(2)不经过点的直线被圆截得的弦长与椭圆C的长轴长相等,且直线与椭圆C交于DE两点,试判断的周长是否为定值?若是,求出定值;若不是,请说明理由.

【答案】(1)(2)的周长为定值为,详见解析

【解析】

(1)根据已知条件求出AB两点的坐标,再由和离心率为建立关于a,b,c的方程,从而得椭圆的方程;

(2)根据直线被圆所截得的弦长等于椭圆的长轴长得出k,m的关系,再将直线与椭圆的方程联立消去y,得到交点的横坐标的韦达定理表达式,分别求出,得出的周长为定值,得解.

(1)因为,所以,则,所以椭圆C的方程可化为

不妨令

易知

因为,所以,即

,所以

所以椭圆C的方程为

(2)由(1)知椭圆C的长轴长为,因为直线被圆截得的弦长与椭圆C的长轴长相等,所以圆的圆心OO为坐标原点)到直线l的距离,所以,即

,联立方程,得整理得

所以,又

所以

所以

所以的周长是.

所以的周长为定值,为.

得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数满足关系,其中是常数.

1)设,求的解析式;

2)是否存在函数及常数)使得恒成立?若存在,请你设计出函数及常数;不存在,请说明理由;

3)已知时,总有成立,设函数)且,对任意,试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是由正整数构成的数表,用aij表示i行第j个数(ijN).此表中ailaiii,每行中除首尾两数外,其他各数分别等于其肩膀上的两数之和.

(1)写出数表的第六行(从左至右依次列出).

(2)设第n行的第二个数为bnn≥2),bn

(3)令,记Tn为数列n项和,求的最大值,并求此时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中,正确的是( )

A. 命题,则的逆命题是真命题

B. 命题存在的否定是:任意

C. 命题“pq”为真命题,则命题“p”和命题“q”均为真命题

D. 已知,则的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500以上为常喝体重超过50为肥胖

常喝

不常喝

合计

肥胖

2

不肥胖

18

合计

30

已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为

(1)请将上面的列联表补充完整;

(2)是否有的把握认为肥胖与常喝碳酸饮料有关说明你的理由

(3)已知常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生抽取2人参加电视节目,则正好抽到一男一女的概率是多少?

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义域为集合上的函数满足:①;②);③成等比数列;这样的不同函数的个数为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下面四个命题,其中正确命题的序号是(

直线不相交直线为异面直线的充分而不必要条件;②直线平面内所有直线的充要条件是平面;③直线直线的充要条件是平行于所在的平面;④直线平面的必要而不充分条件是直线平行于内的一条直线.

A.①③B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别是,左、右两顶点分别是,弦ABCD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点如图).

的一条渐近线的一个方向向量,试求的两渐近线的夹角

,试求双曲线的方程;

的条件下,且,点C与双曲线的顶点不重合,直线和直线与直线l分别相交于点MN,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,若存在常数M,使得对任意中至少有一个不小于M,则记作,那么下列命题正确的是( ).

A.,则数列各项均大于或等于M

B.,则

C.,则

D.,则

查看答案和解析>>

同步练习册答案