精英家教网 > 高中数学 > 题目详情
3.已知某几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.1D.2

分析 画出几何体的图形,利用三视图的数据,求解几何体的体积即可.

解答 解:由三视图可知,该几何体为底面是正方形,且边长为2cm,高为1cm的四棱锥,
如图,$V=\frac{1}{3}×{2^2}×1=\frac{4}{3}$.

故选:B.

点评 本题考查棱柱、棱锥、棱台的体积的求法,判断几何体的特征是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知sinα=-$\frac{\sqrt{3}}{2}$,且α为第四象限角,则tanα的值为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若M(x,y)满足$2\sqrt{5}\sqrt{{{(x-2)}^2}+{{(y-1)}^2}}=|{2x+y-4}|$,则M的轨迹(  )
A.双曲线B.直线C.椭圆D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow a=({1,k}),\overrightarrow b=({2,3})$,若$\overrightarrow a$与$\overrightarrow b$平行,则k=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:$\left\{\begin{array}{l}{x=1+\sqrt{3}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)设l与C1相交于A,B两点,求|AB|;
(2)若把曲线C1上各点的横坐标压缩为原来的$\frac{1}{2}$,纵坐标压缩为原来的$\frac{{\sqrt{3}}}{2}$得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知Sn是数列{an}的前n项和,向量$\overrightarrow a=({a_n}-1,-2),\overrightarrow b=(4,{S_n})$满足$\overrightarrow a⊥\overrightarrow b$,则a2015=22015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知a,b都是正实数,且满足log9(9a+b)=log3$\sqrt{ab}$,则3a+b的最小值为12+6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知全集U=R,集合A={x|4x+a>0},B={x|x2-2x-3>0}.
(1)当a=4时,求集合A∩B;
(2)若A∩(∁UB)=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.动直线l与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1只有一个公共点P,且点P在第一象限,直线l1过原点且与l垂直,则P点到直线l1的距离的最大值为2-$\sqrt{3}$.

查看答案和解析>>

同步练习册答案