精英家教网 > 高中数学 > 题目详情

【题目】(2015·四川)设直线l与抛物线y2=4x相交于A,B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )
A.(1,3)
B.(1, 4)
C.(2,3)
D.(2,4)

【答案】D
【解析】显然当直线f的斜率不存在时,必有两条直线满足题设.当直线l的斜率存在时,设斜率为k .设A(x1, y1), B(x2, y2), x1≠x2 , M(x0, y0), 则,相减得(y1+y2)(y1-y2)=4(x1-x2), 由于x1≠x2 , 所以, 即ky0=2, 圆心为C(5,0),由CM⊥AB,得k·=-1, ky0=5- x0. 所以2=5- x0 , x0=3, 即点M必在直线x=3上将x=3代入y2=4x得y2=12, ∴-2<y0<2. 因为点M在圆(x-5)2+y2=r2(r>0)上, 所以(x0-5)2+y02=r2 , r2=y02+4<12+4=16, 又y02+4>4(由于斜率不存在, 故y0≠0, 所以不取等号),所以4<y02+4<16, 所以2<r<4, 选D。

首先应结合图形进行分析.结合图形易知,只要圆的半径小于5,那么必有两条直线(即与x轴 垂直的两条切线)满足题设,因此只需直线的斜率存在时,再有两条直线满足题设即可.接下来要解决的问题是当直线的斜率存在时,圆的半径的范围是什么.涉及 直线与圆锥曲线的交点及弦的中点的问题,常常采用“点差法”.在本题中利用点差法可得,中点必在直线x=3上,由此可确定中点的纵坐标y0的范围,利用这个范围即可得到r的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图框图,已知输出的s∈[0,4],若输入的t∈[m,n],则实数n﹣m的最大值为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记BOP=x,将动P到A、B两点距离之和表示为x的函数f(x),则y=f(x)的图像大致为()

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·新课标I卷)在直角坐标系xoy中,曲线Cy=与直线y=kx+a(a>0)交与M,N两点,
(1)当k=0时,分别求C在点MN处的切线方程;
(2)y轴上是否存在点P , 使得当k变动时,总有∠OPM=∠OPN?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的对边分别为为锐角,问:(1)证明: B - A = ,(2)求 sin A + sin C 的取值范围
(1)(1)证明:
(2)(2)求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客P1P2P3P4P5的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.
(1)(I)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)  

乘客

P1

P2

P3

P4

P5

座位号

3

2

1

4

5

3

2

4

5

1


(2)(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·四川)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点。设异面直线EM与AF所成的角为,则cos的最大值为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)“sin=cos”是“cos2=0”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马P-ABCD中,侧棱底面,且,过棱的中点,作于点,连接
(1)证明:平面.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写
出结论);若不是,说明理由;
(2)若面与面所成二面角的大小为 , 求的值.

查看答案和解析>>

同步练习册答案