精英家教网 > 高中数学 > 题目详情

【题目】某工厂加工一批零件,加工过程中会产生次品,根据经验可知,其次品率p与日产量x(万件)之间满足函数关系式,已知每生产1万件合格品可获利2万元,但生产1万件次品将亏损1万元(次品率=次品数/生产量)

1)试写出加工这批零件的日盈利额y(万元)与日产量x(万件)的函数;

2)当日产量为多少时,可获得最大利润?最大利润为多少?

【答案】1;(2)当日产量为4万元时可获得最大利润万元.

【解析】

1)根据合格品可获利2万元,次品将亏损1万元,对分两种情况讨论,即可得答案;

(2)利用分段函数的性质,求出最大值,即可得答案.

1)当时,

时,.

所以函数关系为

2)当时,

所以当时取得最大值2

时,

所以在函数单调递减,所以当时,y取得最大值

所以当日产量为4万元时可获得最大利润万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若的极大值点,求的取值范围;

(2)当时,方程(其中)有唯一实数解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意xR,存在函数fx)满足(

A.fcosx)=sin2xB.fsin2x)=sinx

C.fsinx)=sin2xD.fsinx)=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②上是增函数或者减函数.

1)若在区间上是闭函数,求常数的值;

2)找出所有形如的函数(都是常数),使其在区间上是闭函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).

1)求

2)若,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,;

若函数上存在零点,求a的取值范围;

设函数,,当时,若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以为极点,轴为正半轴为极轴建立极坐标系.已知曲线的极坐标方程为 ,直线与曲线相交于两点,直线过定点且倾斜角为交曲线两点.

(1)把曲线化成直角坐标方程,并求的值;

(2)若成等比数列,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)椭圆 )的上顶点为上的一点,以为直径的圆经过椭圆的右焦点

1)求椭圆的方程;

2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案