精英家教网 > 高中数学 > 题目详情

【题目】关于函数有下述四个结论:

的图象关于点对称的最大值为

在区间上单调递增是周期函数且最小正周期为

其中所有正确结论的编号是( )

A.①②B.①③C.①④D.②④

【答案】D

【解析】

可证明,故正确;由于的一个周期,设,则,换元令,设,求导,求单调区间,极值,得最大值为,故不正确;由得,在区间上没有单调性,故不正确;由得,的一个周期,用反证法证明最小正周期为,故正确.

,所以成立.

因为,所以的一个周期,

不妨设,则

,令,则有

递增区间是递减区间是

的极大值为,所以最大值不为.

时,

知,在该区间内有增有减,故不单调.

故该函数为周期函数,若

故该函数最小正周期为.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】德阳中学数学竞赛培训共开设有初等代数、初等几何、初等数论和微积分初步共四门课程,要求初等代数、初等几何都要合格,且初等数论和微积分初步至少有一门合格,则能取得参加数学竞赛复赛的资格,现有甲、乙、丙三位同学报名参加数学竞赛培训,每一位同学对这四门课程考试是否合格相互独立,其合格的概率均相同,(见下表),且每一门课程是否合格相互独立,


初等代数

初等几何

初等数论

微积分初步

合格的概率





1)求甲同学取得参加数学竞赛复赛的资格的概率;

2)记表示三位同学中取得参加数学竞赛复赛的资格的人数,求的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的椭圆和抛物线有相同的焦点,椭圆过点,抛物线的顶点为原点.

求椭圆和抛物线的方程;

设点P为抛物线准线上的任意一点,过点P作抛物线的两条切线PAPB,其中AB为切点.

设直线PAPB的斜率分别为,求证:为定值;

若直线AB交椭圆CD两点,分别是的面积,试问:是否有最小值?若有,求出最小值;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正三棱锥中点, ,过的平面截三棱锥的外接球所得截面的面积范围为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数有以下三个判断

①函数恒有两个零点且两个零点之积为-1

②函数恒有两个极值点且两个极值点之积为-1

③若是函数的一个极值点,则函数极小值为-1.

其中正确判断的个数有( )

A.0B.1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱柱ABC-平面ABCDEFG分别为AC的中点AB=BC=AC==2.

求证AC平面BEF

求二面角B-CD-C1的余弦值

证明直线FG与平面BCD相交

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个有穷数列每相邻两项之间添加一项,使其等于两相邻项的和,我们把这样的操作叫做该数列的一次“H扩展”. 已知数列12. 第一次“H扩展”后得到132;第二次“H扩展”后得到14352; 那么第10次“H扩展”后得到的数列的所有项的和为( )

A.88572B.88575C.29523D.29526

查看答案和解析>>

同步练习册答案