【题目】已知函数,.
(1)求在点P(1,)处的切线方程;
(2)若关于x的不等式有且仅有三个整数解,求实数t的取值范围;
(3)若存在两个正实数,满足,求证:.
【答案】(1);(2);(3)见解析.
【解析】
(1)求出P(1,0),x>0,,f′(1)=1,利用导数的几何意义能求出f(x)在点P(1,f(1))处的切线方程.
(2)求出,x>0,则f′(x)=0,得x=e,列表讨论能求出实数t的取值范围.
(3)h(x)=x2﹣2x+4lnx,从而(x1+x2)2﹣2(x1+x2)﹣4lnx1x2,令t=x1x2,=t2+2t﹣4lnt,(t>0),…(11分)则=2t+2﹣=,由此利用导数性质能证明x1+x2≥3.
(1),,所以点坐标为;
又,,则切线方程为,
所以函数在点处的切线方程为.
(2)
正 | 0 | 负 | |
单调增 | 极大值 | 单调减 |
由, 得;
时,或,满足条件的整数解有无数个,舍;
时,,得且,满足条件的整数解有无数个,舍;
时,或,当时,无整数解;
当时,不等式有且仅有三个整数解,又,,
因为在递增,在递减;所以, 即,即;
所以实数的取值范围为.
(3),
因为,
所以,
即,
令,,
则,
当时,,所以函数在上单调递减;
当时,,所以函数在上单调递增.
所以函数在时,取得最小值,最小值为3.
因为存在两个正实数,满足,所以,
即,所以或.
因为为正实数,所以.
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,若存在常数,使得对任意的成立,则称函数是“类周期函数”.
(1)判断函数,是否是“类周期函数”,并证明你的结论;
(2)求证:若函数是“类周期函数”,且是偶函数,则是周期函数;
(3)求证:当时,函数一定是“类周期函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=a-bcos(b>0)的最大值为,最小值为-.
(1)求a,b的值;
(2)求函数g(x)=-4asin的最小值并求出对应x的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径,两点间的距离,现在珊瑚群岛上取两点,,测得,,,,则,两点的距离为___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com