【题目】设函数,.
(1)当时,求函数在上的最小值;
(2)若函数在上存在零点,证明:.
【答案】(1)见解析;(2)见解析
【解析】
(1)先求出,分类讨论,当和时,函数在上的单调性,即可求出函数在上的最小值;
(2)分离参数后,得,令,分类讨论求解的最小值,即可求出参数的取值范围.
(1)因为,所以,
当时,因为,所以,则函数在上单调递减,故函数在上的最小值为;
当时,若,则,若,则,所以函数在上单调递减,在上单调递增,故函数在上的最小值为.
综上,当时,函数在上的最小值为;
当时,函数在上的最小值为.
(2)由题意可得,当时,有解,即有解.
令,则.
设,则,
所以在上单调递增,
又,所以在上有唯一的零点,即在上有唯一的零点,设为,则,
当时,单调递减,当时,,单调递增,
所以在上的最小值为,
又,即,所以,
因为在上有解,所以,即.
科目:高中数学 来源: 题型:
【题目】已知椭圆以抛物线的焦点为顶点,且离心率为.
(1)求椭圆的方程;
(2)若直线与椭圆相交于、两点,与直线相交于点,是椭圆上一点且满足(其中为坐标原点),试问在轴上是否存在一点,使得为定值?若存在,求出点的坐标及的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数.
(1)求的单调区间;
(2)在函数的图象上取两个不同的点,令直线的斜率为,则在函数的图象上是否存在点,且,使得?若存在,求两点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在日常生活中,石子是我们经常见到的材料,比如在各种建筑工地或者建材市场上常常能看到堆积如山的石子,它的主要成分是碳酸钙.某雕刻师计划在底面边长为2m、高为4m的正四棱柱形的石料中,雕出一个四棱锥和球M的组合体,其中O为正四棱柱的中心,当球的半径r取最大值时,该雕刻师需去除的石料约重___________kg.(最后结果保留整数,其中,石料的密度,质量)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l过点且倾斜角为.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为,l与C交于M,N两点.
(1)求C的直角坐标方程和的取值范围;
(2)求MN中点H的轨迹的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线与直线只有一个公共点,点是抛物线上的动点.
(1)求抛物线的方程;
(2)①若,求证:直线过定点;
②若是抛物线上与原点不重合的定点,且,求证:直线的斜率为定值,并求出该定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com