【题目】某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还须从物理,化学,生物,历史,地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生的选考方案确定;否则,称该学生选考方案待确定.例如,学生甲选择“物理、化学和生物”三个选考科目,则学生甲的选考方案确定,“物理、化学和生物”为其选考方案.
某学校为了解高一年级420名学生选考科目的意向,随机选取30名学生进行了一次调查,统计选考科目人数如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 选考方案确定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
选考方案待确定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 选考方案确定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
选考方案待确定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估计该学校高一年级选考方案确定的学生中选考生物的学生有多少人?
(Ⅱ)假设男生、女生选择选考科目是相互独立的.从选考方案确定的8位男生中随机选出1人,从选考方案确定的10位女生中随机选出1人,试求该男生和该女生的选考方案中都含有历史学科的概率;
(Ⅲ)从选考方案确定的8名男生中随机选出2名,设随机变量,求.
【答案】(Ⅰ)人(Ⅱ)(Ⅲ).
【解析】
(Ⅰ)用样本估计总体的思想,先计算样本的频率,再乘以总数即可得解;
(Ⅱ)分别求出男生和女生有历史的概率,相乘即可;
(Ⅲ)先分析出这8名男生的选考情况,再利用古典概型求解即可.
(Ⅰ)由题可知,选考方案确定的男生中确定选考生物的学生有4人,选考方案确定的女生中确定选考生物的学生有6人.该学校高一年级选考方案确定的学生中选考生物的学生有人.
(Ⅱ)由数据可知,选考方案确定的8位男生中选出1人选考方案中含有历史学科的概率为;选考方案确定的10位女生中选出1人含有历史学科的概率为,所以该男生和该女生的选考方案中都含有历史学科的概率为.
(Ⅲ)由数据可选,选考方案确定的男生中有4人选择物理,化学和生物;有2人选择物理,化学和历史,有1人选择物理化学和地理;有1人选择物理,化学和政治.
.
科目:高中数学 来源: 题型:
【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(1)求二面角F-BE-D的余弦值;
(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究某种图书每册的成本费(元)与印刷数(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中, .
(1)根据散点图判断: 与哪一个更适宜作为每册成本费(元)与印刷数(千册)的回归方程类型?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(回归系数的结果精确到0.01);
(3)若每册书定价为10元,则至少应该印刷多少册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计分别为, )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(限定).
(1)写出曲线的极坐标方程,并求与交点的极坐标;
(2)射线与曲线与分别交于点(异于原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】人耳的听力情况可以用电子测听器检测,正常人听力的等级为0-25(分贝),并规定测试值在区间为非常优秀,测试值在区间为优秀.某班50名同学都进行了听力测试,所得测试值制成频率分布直方图:
(Ⅰ)现从听力等级为的同学中任意抽取出4人,记听力非常优秀的同学人数为,求的分布列与数学期望;
(Ⅱ)在(Ⅰ)中抽出的4人中任选一人参加一个更高级别的听力测试,测试规则如下:四个音叉的发生情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号, , , (其中, , , 为1,2,3,4的一个排列).若为两次排序偏离程度的一种描述, ,求的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥﹣中,底面ABCD是矩形,⊥平面,,是的中点,是线段上的点.
(1)当是的中点时,求证:∥平面.
(2)当:= 2:1时,求二面角﹣﹣的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知椭圆两个焦点的坐标分别是(-2,0),(2,0),并且经过点,求它的标准方程;
(2)已知双曲线两个焦点的坐标分别是(0,-6),(0,6),并且经过点(2,-5),求它的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com