精英家教网 > 高中数学 > 题目详情

【题目】如图,已知多面体中,为菱形,平面.

(1)求证:平面平面

(2)求二面角的余弦值.

【答案】(1)证明见解析;(2).

【解析】

(1)由题意可知共面.连接,相交于点由空间几何关系可证得平面结合题意有平面结合面面垂直的判断定理可得平面平面.

(2)取的中点A点为坐标原点建立空间直角坐标系,结合几何体的结构特征可得平面的法向量为平面的法向量,利用空间向量的结论可得二面角的余弦值为.

(1)证明:∵∴四点共面.

如图所示,连接,相交于点

∵四边形是菱形,∴对角线

平面

,又

平面

平面

平面

∴平面平面.

(2)取的中点

是等边三角形,∴

A点为坐标原点建立如图所示的空间直角坐标系,

.

.

.

,解得.

设平面的法向量为

.

同理可得:平面的法向量.

.

由图可知:二面角的平面角为钝角,

∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为椭圆E 的左、右顶点, E的两个焦点与E的短轴两个端点所构成的四边形是正方形.

1)求椭圆E的方程;

2)设动点),记直线E的交点(不同于)到x轴的距离分别为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:

x

0

1

2

3

y

1

2

1

0

1

2

描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.

1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;

2)研究函数并结合图象与表格,回答下列问题:

①点在函数图象上,      ;(填

②当函数值时,求自变量x的值;

③在直线的右侧的函数图象上有两个不同的点,且,求的值;

④若直线与函数图象有三个不同的交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

①在某项测量中,测量结果服从正态分布,若内取值范围概率为,则内取值的概率为

②若为实数,则“”是“”的充分而不必要条件;

③已知命题,则是:

中,“角成等差数列”是“”的充分不必要条件;其中,所有真命题的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形是由正n+2边形扩展而来 ,则第n+1个图形的顶点个数是 (  )

(1) (2)(3) (4)

A. (2n+1)(2n+2)B. 3(2n+2)C. (n+2)(n+3)D. (n+3)(n+4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|ax2+2x+1=0aR}

1)若A只有一个元素,试求a的值,并求出这个元素;

2)若A是空集,求a的取值范围;

3)若A中至多有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为菱形,上的点,过的平面分别交于点,且平面.

(1)证明:

(2)当的中点,与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+1)=-f(x)且f(x)在[-1,0]上是增函数,给出下列四个命题:

f(x)是周期函数;②f(x)的图象关于x=1对称;③f(x)在[1,2]上是减函数;④f(2)=f(0).

其中正确命题的序号是____________.(请把正确命题的序号全部写出来)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,证明:为偶函数

)若上单调递增,求实数的取值范围

)若,求实数的取值范围,使上恒成立.

查看答案和解析>>

同步练习册答案