精英家教网 > 高中数学 > 题目详情
如图,在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=4,BC=3,
点P∈平面CC1D1D,且PD=PC=2
2

(Ⅰ)证明:PD⊥平面PBC;
(Ⅱ)求PA与平面ABCD所成的角的正切值.
分析:(Ⅰ),要证明PD⊥平面PBC,只需证明PD垂直于平面PBC的两条相交直线即可,由 PD=PC=
2
可得PD⊥PC,而ABCD-A1B1C1D1是一个长方体,容易证明BC⊥面CC1D1D,而P∈平面CC1D1D,所以PD?面CC1D1D,容易得到PD⊥BC,从而得证;
(II)过P点在平面CC1D1D作PE⊥CD于E,连接AE,可得∠PAE就是PA与平面ABCD所成的角,解三角形PAE即可得到PA与平面ABCD所成的角的正切值.
解答:解:(Ⅰ)证明:因为 PD=PC=
2
,CD=AB=2,
所以△PCD为等腰直角三角形,所以PD⊥PC.(1分)
因为ABCD-A1B1C1D1是一个长方体,
所以BC⊥面CC1D1D,而P∈平面CC1D1D,
所以PD?面CC1D1D,所以BC⊥PD.(3分)
因为PD垂直于平面PBC内的两条相交直线PC和BC,
由线面垂直的判定定理,可得PD⊥平面PBC.(6分)
解:(II)过P点在平面CC1D1D作PE⊥CD于E,连接AE
∵平面ABCD⊥平面PCD
∴PE⊥平面ABCD
∴∠PAE就是PA与平面ABCD所成的角,
∵PE=2,AE=
13

∴tan∠PAE=
PE
AE
=
2
13
13

∴PA与平面ABCD所成的角的正切值为
2
13
13
点评:本题考查线面垂直的判定及线面平行的判定,直线与平面的夹角,要注意线面垂直中的转化思想,(II)中要注意转化到平面解进行解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=2,BC=3,点P∈平面CC1D1D且PD=PC=
2

(Ⅰ)证明:PD⊥平面PBC;
(Ⅱ)若AA1=a,当a为何值时,PC∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AA1=a,AB=2,BC=3,点P∈平面CC1D1D且PD=PC=
2


(Ⅰ)在正视图右边及下方区域画出其侧视图、俯视图(在答卷上作答)
(II)证明:PD⊥平面PBC;
(III)证明:当a=2时,PC∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•佛山一模)如图,在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥.AB=2,BC=3,点P∈平面CC1D1D且PD=PC=
2

(Ⅰ)证明:PD⊥平面PBC;
(Ⅱ)求PA与平面ABCD所成的角的正切值;
(Ⅲ)若AA1=a,当a为何值时,PC∥平面AB1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图.在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥,且AB=2,P∈平面CC1D1D,PD=PC=AD=
2

(1)求证:PD⊥平面PBC;
(2)若AA1=a,当a为何值时,PC∥平面AB1D;
(3)在(2)的前提下,若点P,A,D,C1在同一球面上,求此球面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图.在组合体中,ABCD-A1B1C1D1是一个长方体,P-ABCD是一个四棱锥,且AB=2,P∈平面CC1D1D,PD=PC=AD=
2
.PC∥平面AB1D
(1)求证:PD⊥平面PBC;
(2)若AA1=a,求a值;
(3)求点C1到平面PAB的距离;
(4)若点P,A,D,C1在同一球面上,求此球面的面积.

查看答案和解析>>

同步练习册答案