精英家教网 > 高中数学 > 题目详情
8.若函数f(x)=ex-ax在(1,+∞)上单调增,则实数a的最大值为e.

分析 根据导数和函数单调性的关系,再分离参数,求出最值即可.

解答 解:f′(x)=ex-a
∵函数f(x)在区间(1,+∞)上单调递增?函数f′(x)=ex-a≥0在区间(1,+∞)上恒成立,
∴a≤[ex]min在区间(1,+∞)上成立.
而ex>e,
∴a≤e.
故答案为:e.

点评 本题考查函数的导数的应用,正确把问题等价转化、熟练掌握利用导数研究函数的单调性、极值与最值等是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,有下列四个命题:①d<0;②S11>0;③S12<0;④S8>S5,其中正确命题序号是(  )
A.②③B.①④C.①③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标系中,与圆ρ=2cosθ相切,且与极轴平行的直线的极坐标方程是ρsinθ=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$f(x)=|{\begin{array}{l}{cos(π-x)}&{sinx}\\{sin(π+x)}&{cosx}\end{array}}|$的最小正周期t=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P是抛物线y2=4x上一动点,则点P到点A(0,-1)的距离与到直线x=-1的距离和的最小值是(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1的两个焦点分别为F1,F2,点P是椭圆上一点,则△PF1F2的周长为18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l与圆C:x2+y2+2x-4y+a=0相交于A,B两点,弦AB的中点为M(0,1).
(1)若圆C的半径为$\sqrt{3}$,求实数a的值;
(2)若弦AB的长为4,求实数a的值;
(3)求直线l的方程及实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两条直线A1x+B1y+C1=0,A2x+B2y+C2=0互相垂直的充分必要条件是(  )
A.$\frac{{{A_1}{A_2}}}{{{B_1}{B_2}}}=-1$B.$\frac{{{A_1}{A_2}}}{{{B_1}{B_2}}}=1$C.A1A2+B1B2=0D.A1A2-B1B2=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.角α终边上一点的坐标为(1,2),则tan2α=$-\frac{4}{3}$.

查看答案和解析>>

同步练习册答案