精英家教网 > 高中数学 > 题目详情
ABC是正三角形,线段EADC都垂直于平面ABC.设EA=AB=2a,DC=a,且FBE的中点,如图.

(1)求证:DF∥平面ABC;
(2)求证:AFBD;
(3)求平面BDF与平面ABC所成二面角的大小.
  (1)证明:如图所示,取AB中点G,连结CGFG.

EF=FB,AG=GB,
FG.
DC,∴FGDC.
∴四边形CDFG为平行四边形,
DFCG.
平面ABC,平面ABC,
DF∥平面ABC.
(2)证明:∵EA⊥平面ABC,
EACG.
又△ABC是正三角形,
CGAB.
CG⊥平面AEB.
CGAF.
又∵DFCG,∴DFAF.
AE=AB,FBE中点,
AFBE.又BEDF=F,
AF⊥平面BDE.
AFBD.
(3)解:延长ED交AC延长线于G′,连结BG′.
,CDAE知D为EG′中点,
FDBG′.
CG⊥平面ABE,FDCG,
BG′⊥平面ABE.
∴∠EBA为所求二面角的平面角.
在等腰直角三角形AEB中,易求∠ABE="45°."
空间直线和平面
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


如图所示,已知四棱锥S—ABCD的底面ABCD是矩形,MN分别是CDSC的中点,SA⊥底面ABCDSA=AD=1,AB=.
(1)求证:MN⊥平面ABN
(2)求二面角A—BNC的余弦值.


 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

轴截面是直角三角形的圆锥的底面半径为r,则其轴截面面积为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,正三棱柱的底面边长为,侧棱长为,点在棱上.
(1)若,求证:直线平面
(2)是否存在点,使平面⊥平面,若存在,请确定点的位置,若不存在,请说明理由;
(3)请指出点的位置,使二面角平面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:直线平面,如图.求证:直线与平面相交.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正四棱柱ABCD-A1B1C1D1AB=1,AA1=2,点ECC1中点,点FBD1中点.

(1)证明:EFBD1CC1的公垂线(即证EFBD1CC1都垂直);
(2)求点D1到面BDE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 如图所示,正方体ABCD—A1B1C1D1中,M、N分别是A1B1,B1C1的中点.问:
(1)AM和CN是否是异面直线?说明理由;
(2)D1B和CC1是否是异面直线?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在长方体OABC-O1A1B1C1中,|OA|="2," |AB|=3,|AA1|=3,MOB1BO1的交点,则M点的坐标是____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中,正确的是(  )
A.平行于圆锥的一条母线的截面是等腰三角形
B.平行于圆台的一条母线的截面是等腰梯形
C.过圆锥顶点的截面是等腰三角形
D.过圆台一个底面中心的截面是等腰梯形

查看答案和解析>>

同步练习册答案