精英家教网 > 高中数学 > 题目详情

【题目】2020年初,我国突发新冠肺炎疫情,疫情期间中小学生“停课不停学”.已知某地区中小学生人数情况如甲图所示,各学段学生在疫情期间“家务劳动”的参与率如乙图所示.为了进一步了解该地区中小学生参与“家务劳动”的情况,现用分层抽样的方法抽取4%小学初中高中学段的学生进行调查,则抽取的样本容量、抽取的高中生家中参与“家务劳动”的人数分别为( )

A.2750200B.2750110C.1120110D.1120200

【答案】C

【解析】

由于利用分层抽样的方法按4%的比例从各部分抽取,所以样本容量等于全部人数与4%的积,高中生家中参与“家务劳动”的人数为抽取的高中生人数乘以0.55

解:由题意得,抽取的样本容量为

抽取的高中生家中参与“家务劳动”的人数为

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,曲线上任意一点到的距离等于该点到直线的距离.

(Ⅰ)求及曲线的方程;

(Ⅱ)若直线与椭圆只有一个交点,与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧棱底面,底面三角形是正三角形,EBC中点,则下列叙述正确的是(

A.是异面直线B.平面

C.AE为异面直线,且D.平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春季,某出租汽车公同决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为11万元/辆和8万元/辆的AB两款车型,根据以往这两种出租车车型的数据,得到两款出租车型使用寿命频数表如表:

1)填写如表,并判断是否有99%的把握认为出租车的使用寿命年数与汽车车有关?

2)以频率估计概率,从2020年生产的AB的车型中各随机抽1车,以X表示这2车中使用寿命不低于7年的车数,求X的分布列和数学期望;

3)根据公司要求,采购成本由出租公司负责,平均每辆出租每年上交公司6万元,其余维修和保险等费用自理,假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这100辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?

参考公式:,其中na+b+c+d.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,底面是边长为2的正三角形,底面,点分别为的中点.

1)求证:平面平面

2)在线段上是否存在点,使得直线与平面所成的角的余弦值为?若存在,确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系.每年交强险最终保险费计算方法是:交强险最终保险费,其中a为交强险基础保险费,A为与道路交通事故相联系的浮动比率,同时满足多个浮动因素的,按照向上浮动或者向下浮动比率的高者计算.按照我国《机动车交通事故责任强制保险基础费率表》的规定:普通6座以下私家车的交强险基础保险费950元,交强险费率浮动因素及比率如下表:

交强险浮动因素和浮动费率比率表

类型

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

上两个年度未发生有责任道路交通事故

上三个及以上年度未发生有责任道路交通事故

上一个年度发生一次有责任不涉及死亡的道路交通事故

上一个年度发生两次及以上有责任道路交通事故

上一个年度发生有责任道路交通死亡事故

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了100辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计结果如下表:

类型

数量

25

10

10

25

20

10

以这100辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题.

1)记X为一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望(数学期望值保留到个位数字);

2)某二手车销售商专门销售这一品牌的二手车,且将经销商购车后下一年的交强险最终保险费高于交强险基础保险费的车辆记为事故车,假设购进一辆事故车亏损3000元,购进一辆非事故车盈利5000.

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至少有一辆是事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线的参数方程为,曲线的极坐标方程为

求直线的普通方程与曲线的直角坐标方程;

若把曲线上给点的横坐标伸长为原来的倍,纵坐标伸长为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且四个顶点构成的四边形的面积是.

1)求椭圆的方程;

2)已知直线经过点,且不垂直于轴,直线与椭圆交于两点,的中点,直线与椭圆交于两点(是坐标原点),若四边形的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,MNP分别是C1D1BCA1D1的中点,有下列四个结论:

APCM是异面直线;②APCMDD1相交于一点;③MNBD1

MN∥平面BB1D1D

其中所有正确结论的编号是(  )

A.①④B.②④C.①④D.②③④

查看答案和解析>>

同步练习册答案