精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-6x+4lnx+a(0<x≤6).
(1)求函数的单调区间;
(2)a为何值时,方程f(x)=0有三个不同的实根.
分析:(1)求导得:f(x)=2x-6+
4
x
=
2x2-6x+4
x
=
2(x-1)(x-2)
x
令f(x)>0和f(x)<0再结合0<x≤6即可求解.
(2)可分析出当x→+∞时f(x)→+∞并且x→0时f(x)→-∞而f(x)在(0,1)递增(1,2)递减(2,6)递增故要使方程f(x)=0有三个不同的实根只需f(x)的极大值大于0同时极小值小于0即可.
解答:解:(1)f(x)=2x-6+
4
x
=
2x2-6x+4
x
=
2(x-1)(x-2)
x
,则
x x∈(0,1) x=1 x∈(1,2) x=2 x∈(2,6]
f′(x) + 0 - 0 +
f(x) 递增 极大值 递减 极小值 递增
所以函数的单调递增区间为(0,1)和(2,6],单调递减区间为[,2].
(2)由(1)可知即y=f(x)的图象与x轴有3个不同的交点
又知当x趋近于0时,f(x)趋近于-∞,
数形结合得f(1)=a-5>0且f(2)=-8+4ln2+a<0,
所以5<a<8-4ln2
点评:本题第一问主要考查了求函数的单调区间,关键是求导函数f(x)再令f(x)≥0,f(x)≤0再结合0<x≤6求出x的取值范围写成区间即可但要注意单调区间不能用∪连接.第二问主要考查了根的分布问题,关键是利用函数的单调性再结合极限思想转化为极大极小值大于小于0的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案