精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
如图所示,四棱锥中,底面为正方形,平面分别为的中点.

(1)求证:
(2)求平面EFG与平面ABCD所成锐二面角的余弦值.

(1)要证 ,只需证,只需证 平面; (2)

解析试题分析:(1)∵平面平面
   又为正方形,∴.又,…………3分
平面 ∵平面,∴. ………………………………5分
中,中位线,∴     ……………6分
(2)记AD中点为H,连结FH、HG,易知GH//DC,,    
中EF//DC,∴EF//GH所以E、F、H、G四点共面……7分
∴平面EFG与平面ABCD交于GH,所求锐二面角为F-GH-D.……………8分
由(1)平面,EF//DC//GH∴平面
平面FHD,平面FHD,
所以FH,DH,
∴二面角F-GH-D的平面角是  ……………………11分
FH是等腰直角的中位线,=  …………………………13分
∴所求锐二面角的余弦值为.………………14分
证法2:DA、DC、DP两两垂直,以为原点建立空间直角坐标系…1分

 ,,G(1,2,0),       ………3分
(1) ………………4分
 ∴……6分
      ………………………………………7分
(2)∵平面
是平面的一个法向量.………9分
设平面EFG的法向量为,∵
,得是平面的一个法向量. …………11分
        …………………………13分
∴所求锐二面角的余弦值为.                ……………………………14分
考点:线面垂直的性质定理;线面垂直的判定定理;二面角。
点评:二面角的求法是立体几何中的一个难点。我们解决此类问题常用的方法有两种:①综合法,综合法的一般步骤是:一作二说三求。②向量法,运用向量法求二面角应注意的是计算。很多同学都会应用向量法求二面角,但结果往往求不对,出现的问题就是计算错误。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1丄底面ABC.

(I)若M、N分别是AB,A1C的中点,求证:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面 ABC所成的角为60°.问在线段A1C1上是否存在一点P,使得平面B1CP丄平面ACC1A1,若存在,求C1P与PA1的比值,若不存在,说明 理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面为直角梯ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.
(1)求证:PB⊥DM;
(2)求CD与平面ADMN所成角的正弦值;
(3)在棱PD上是否存在点E,PE∶ED=λ,使得二面角C-AN-E的平面角为60o.存在求出λ值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图4,已知四棱锥,底面是正方形,,点的中点,点的中点,连接,.

(1)求证:
(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. 的中点.

(1)当时,求平面与平面的夹角的余弦值;
(2)当为何值时,在棱上存在点,使平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分l2分) 如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(I)求证:EG面ABF;
(Ⅱ)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在平行四边形中,,将它们沿对角线折起,折后的点变为,且
 
(Ⅰ)求证:平面平面
(Ⅱ)为线段上的一个动点,当线段的长为多少时,与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,四棱锥中,为正方形, 分别是线段的中点. 求证:
(1)//平面 ; 
(2)平面⊥平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平行六面体ABCD—A1B1C1D1中,以顶点 A为端点的三条棱 长都等于1,两两夹角都是60°,求对角线AC1的长度. (10分)

查看答案和解析>>

同步练习册答案