精英家教网 > 高中数学 > 题目详情
12.已知P=$\frac{1}{{a}^{2}+a+1}$,Q=a2-a+1,则P、Q的大小关系为(  )
A.P>QB.P<QC.P≤QD.无法确定

分析 配方可得P和Q都大于0,作商法比较可得.

解答 解:∵P=$\frac{1}{{a}^{2}+a+1}$=$\frac{1}{(a+\frac{1}{2})^{2}+\frac{3}{4}}$>0,
Q=a2-a+1=(a-$\frac{1}{2}$)2+$\frac{3}{4}$>0,
$\frac{Q}{P}$=(a2-a+1)(a2+a+1)=(a2+1)2-a2
=(a22+a2+1≥1,故Q≥P
当且仅当a=0时取等号.
故选:C.

点评 本题考查不等式比较大小,配方和作商是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=x2+mx+1,若命题“?x0∈R,f(x0)<0”为真,则m的取值范围是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函教f(x)=2sin(2x-$\frac{π}{3}$).
(1)用”五点法“作出该函数在一个周期内的简图;
(2)求函数f(x)的最大值及取得最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知角α终边上一点P(m,1),cosα=-$\frac{1}{3}$.
(1)求实数m的值;
(2)求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=x+$\frac{a}{x}$有如下性质,如果常数a>0,那么该函数在(0,$\sqrt{a}$)上是减函数,在($\sqrt{a}$,+∞)上的增函数.
(1)试结合函数的性质直接画出函数y=x+$\frac{1}{x}$图象的简图(不必列表描点);
(2)如果函数y=x+$\frac{{2}^{b}}{x}$(x>0)在(0,4]上是减函数,在[4,+∞)是增函数,求b的值;
(3)设常数c∈(1,4),求函数f(x)=x+$\frac{c}{x}$(1≤x≤2)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数f(x)=2sin(2x-$\frac{π}{3}$)的图象与直线y=a在y轴右侧从左到右第n个交点的横坐标为an,且数列{an}是等差数列,则a的取值集合为{0,2,-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(cosC,sin$\frac{C}{2}$),向量$\overrightarrow{n}$=(sin$\frac{C}{2}$,cosC),且$\overrightarrow{m}∥\overrightarrow{n}$.
(1)求角C的大小;
(2)若a2=2b2+c2,求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等边△ABC的边长为a,直线l过A且与AB垂直,将△ABC绕直线l旋转一周所得到的几何体的表面积是3πa2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是棱PB的中点.求证:AE⊥平面PBC.

查看答案和解析>>

同步练习册答案