精英家教网 > 高中数学 > 题目详情
(2013•门头沟区一模)在等差数列{an}中,a1=3,a4=2,则a4+a7+…a3n+1等于
n(5-n)
2
n(5-n)
2
分析:利用等差数列的通项公式和前n项和公式即可得出.
解答:解:设等差数列{an}的公差为d,
∵a1=3,a4=2,∴3+(4-1)d=2,解得d=-
1
3

an=3+(n-1)×(-
1
3
)
=-
1
3
n+
10
3

∴a3n+1=-
1
3
×(3n+1)+
10
3
=3-n.
∴a4+a7+…a3n+1=(3-1)+(3-2)+…(3-n)=3n-
n(n+1)
2
=
n(5-n)
2

故答案为
n(5-n)
2
点评:熟练掌握等差数列的通项公式和前n项和公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•门头沟区一模)为得到函数y=sin(π-2x)的图象,可以将函数y=sin(2x-
π
3
)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“等比函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:
①f(x)=2x
②f(x)=log2|x|;
③f(x)=x2
④f(x)=ln2x
则其中是“等比函数”的f(x)的序号为
③④
③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)已知数列{An}的前n项和为Sn,a1=1,满足下列条件
①?n∈N*,an≠0;
②点Pn(an,Sn)在函数f(x)=
x2+x2
的图象上;
(I)求数列{an}的通项an及前n项和Sn
(II)求证:0≤|Pn+1Pn+2|-|PnPn+1|<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)如图已知平面α,β,且α∩β=AB,PC⊥α,PD⊥β,C,D是垂足.
(Ⅰ)求证:AB⊥平面PCD;
(Ⅱ)若PC=PD=1,CD=
2
,试判断平面α与平面β的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•门头沟区一模)已知函数f(x)=
2,        x≥0
x2+4x+2,  x<0
的图象与直线y=k(x+2)-2恰有三个公共点,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案