精英家教网 > 高中数学 > 题目详情

【题目】甲、乙、丙三人投篮的命中率各不相同,其中乙的命中率是甲的2倍,丙的命中率等于甲与乙的命中率之和.若甲与乙各投篮一次,每人投篮相互独立,则他们都命中的概率为0.18.

1)求甲、乙、丙三人投篮的命中率;

2)现要求甲、乙、丙三人各投篮一次,假设每人投篮相互独立,记三人命中总次数为,求的分布列及数学期望.

【答案】1)甲0.3,乙0.6,丙0.9;(2)分布列见解析,1.8

【解析】

1)乙的命中率是甲的2倍, 设甲的命中率为,甲与乙各投篮一次,每人投篮相互独立,则他们都命中的概率为0.18.求出可得.

2)列出的可能取值为0,1,2,3,分别计算概率,可得分布列及数学期望.

解:(1)设甲的命中率为,则依题意可得

解得

故甲、乙、丙三人投篮的命中率分别为0.30.60.9.

2的可能取值为0123

的分布列为

0

1

2

3

0.028

0.306

0.504

0.162

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】椭圆中,的面积为1

(Ⅰ)求椭圆的方程;

(Ⅱ)设是椭圆上一点,是椭圆的左右两个焦点,直线分别交,是否存在点,使,若存在,求出点的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求曲线的直角坐标方程及直线的普通方程;

2)设直线与曲线交于两点(点在点左边)与直线交于点.求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为1200060002000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):

已知三类工种职工每人每年需交的保费分别为252540元,出险后的赔偿金额分别为100万元100万元50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

1)设A类工种职工的每份保单保险公司的收益为随机变量X(元),求X的数学期望;

2)若该公司全员参加保险,求保险公司该业务所获利润的期望值;

3)现有如下两个方案供企业选择:

方案1:企业不与保险公司合作,职工不交保险,若出意外,企业自行拿出与保险公司提供的等额赔偿金赔付给出意外职工,且企业开展这项工作每年还需另外固定支出12万元;

方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.

请根据企业成本差异给出选择合适方案的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年开始,我省将试行“3+1+2“的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是(  )

A.甲的物理成绩领先年级平均分最多

B.甲有2个科目的成绩低于年级平均分

C.甲的成绩从高到低的前3个科目依次是地理、化学、历史

D.对甲而言,物理、化学、地理是比较理想的一种选科结果

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,直线与抛物线交于两点.

1)若过点,且,求的斜率;

2)若,且的斜率为,当时,求轴上的截距的取值范围(用表示),并证明的平分线始终与轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等边三角形的边长为边的中点,沿折成直二面角,则三棱锥的外接球的表面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)[选修4-5:不等式选讲]

已知函数=|x-a|+(a≠0)

(1)若不等式-≤1恒成立,求实数m的最大值;

(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,已知.是线段的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

同步练习册答案