【题目】已知两个定点,, 动点满足,设动点的轨迹为曲线,直线:.
(1)求曲线的轨迹方程;
(2)若与曲线交于不同的、两点,且 (为坐标原点),求直线的斜率;
(3)若,是直线上的动点,过作曲线的两条切线、,切点为、,探究:直线是否过定点,若存在定点请写出坐标,若不存在则说明理由.
【答案】(1);(2);(3).
【解析】
(1)设点的坐标为,根据列出方程化简,即可求解轨迹方程;
(2)依题意知,且,则点到边的距离为1,列出方程,即可求解;
(3)根据题意,,则都在以为直径的圆上,是直线上的动点,设,联立两个圆的方程,即可求解.
(1)由题,设点的坐标为,
因为,即,
整理得,
所以所求曲线的轨迹方程为.
(2)依题意,,且,
由圆的性质,可得点到边的距离为1,
即点到直线的距离为,解得,
所以所求直线的斜率为.
(3)依题意,,则都在以为直径的圆上,
是直线上的动点,设,
则圆的圆心为,且经过坐标原点,
即圆的方程为,
又因为在曲线上,
由,可得,
即直线的方程为,
由且,可得,解得,
所以直线过定点.
科目:高中数学 来源: 题型:
【题目】一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在的学生数有14人.
(1)求总人数和分数在的人数;
(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数,平均数各是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C的对边分别为,已知且.
(1)求角;
(2)如图,D为△ABC外一点,若在平面四边形ABCD中,,求△ACD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD为矩形,AC、BD交于点O,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(1)求证:BD⊥平面PAC;
(2)若,,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线M:的左、右顶点分别为A,B,设P是曲线M上的任意一点.
(1)当P异于A,B时,记直线PA、PB的斜率分别为、则是否为定值,请说明理由.
(2)已知点C在曲线M长轴上(异于A、B两点),且的最大值为7,求点C的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气的含药量(毫克)与时间(小时)成正比.药物释放完毕后,与的函数关系式为(为常数),如图所示,根据图中提供的信息,回答下列问题:
(1)求从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;
(2)据测定,当空气中每立方米空气的含药量降到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到进教室?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现对一块边长8米的正方形场地ABCD进行改造,点E为线段BC的中点,点F在线段CD或AD上(异于A,C),设(米),的面积记为(平方米),其余部分面积记为(平方米).
(1)当(米)时,求的值;
(2)求函数的最大值;
(3)该场地中部分改造费用为(万元),其余部分改造费用为(万元),记总的改造费用为W(万元),求W取最小值时x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com