精英家教网 > 高中数学 > 题目详情

【题目】若数列{an}满足a11a21an+2an+an+1,则称数列{an}为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a1a2a7,在长方形ABCD内任取一点,则该点不在任何一个扇形内的概率为(

A.1B.1C.D.

【答案】D

【解析】

由题意求得数列的前8项,求得长方形的面积,再求出6个扇形的面积和,由测度比是面积比得答案.

由题意可得,数列的前8项依次为:1123581321

长方形的面积为

6个扇形的面积之和为

所求概率

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市为了了解民众对开展创建文明城市工作以来的满意度,随机调查了40名群众,并将他们随机分成AB两组,每组20人,A组群众给第一阶段的创文工作评分,B组群众给第二阶段的创文工作评分,根据两组群众的评分绘制了如图茎叶图:

根据茎叶图比较群众对两个阶段创文工作满意度评分的平均值及集中程度不要求计算出具体值,给出结论即可

根据群众的评分将满意度从低到高分为三个等级:

满意度评分

低于70分

70分到89分

不低于90分

满意度等级

不满意

满意

非常满意

由频率估计概率,判断该市开展创文工作以来哪个阶段的民众满意率高?说明理由.

完成下面的列联表,并根据列联表判断是否有的把握认为民众对两个阶段创文工作的满意度存在差异?

低于70分

不低于70分

第一阶段

第二阶段

附:

k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】故宫博物院五一期间同时举办“戏曲文化展”、“明代御窖瓷器展”、“历代青绿山水画展”、 “赵孟頫书画展”四个展览.某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求函数的单调区间;

(Ⅱ)方程有3个不同的实根,求实数的取值范围;

(Ⅲ)当时,若对于任意的,都存在,使得,求满足条件的正整数的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为t为参数),直线过点且倾斜角为,以坐标原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系.

1)写出曲线C的极坐标方程和直线的参数方程;

2)若直线l与曲线C交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xexgx)=alnx+x.

1)当ae时,求证:fxgx)恒成立;

2)当a0时,求证:fxgx+1恒有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右顶点,点为椭圆上一点,点关于轴的对称点为,且.

1)若椭圆经过圆的圆心,求椭圆的方程;

2)在(1)的条件下,若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,EA⊥平面ABCDB⊥平面ABCACBCCMAB,垂足为M,且AEAC2BD2BC4

1)求证:CMME

2)求二面角AMCE的余弦值.

3)在线段DC上是否存在一点N,使得直线BN∥平面EMC,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程在平面直角坐标系中,曲线为参数),在以平面直角坐标系的原点为极点轴的正半轴为极轴,且与平面直角坐标系取相同单位长度的极坐标系中,曲线.

(1)求曲线的普通方程以及曲线的平面直角坐标方程;

(2)若曲线上恰好存在三个不同的点到曲线的距离相等,求这三个点的极坐标.

查看答案和解析>>

同步练习册答案