精英家教网 > 高中数学 > 题目详情
12.把函数f(x)=2sin(2x+$\frac{π}{6}$)的图象沿x轴向左平移$\frac{π}{6}$个长度单位,得到函数g(x)的图象,关于函数g(x),下列说法正确的是(  )
A.在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函数
B.其图象关于直线x=-$\frac{π}{4}$对称
C.函数g(x)是奇函数
D.当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,函数g(x)的值域是[-2,1]

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,利用余弦函数的单调性、奇偶性、定义域和值域,以及它的图象的对称性,得出结论.

解答 解:函数f(x)=2sin(2x+$\frac{π}{6}$)的图象沿x轴向左平移$\frac{π}{6}$个长度单位,得到函数g(x)=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=2cos2x的图象,
对于函数g(x)=2cos2x,在[$\frac{π}{4}$,$\frac{π}{2}$]上,2x∈[$\frac{π}{2}$,π],g(x)为减函数,故排除A;
当x=-$\frac{π}{4}$时,g(x)=0,故g(x)的图象不关于直线x=-$\frac{π}{4}$对称,故排除B;
显然,g(x)为偶函数,故排除C;
当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,2x∈[$\frac{π}{3}$,$\frac{4π}{3}$],cos2x∈[-1,$\frac{1}{2}$],故函数g(x)的值域是[-2,1],故D正确,
故选:D.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知曲线C的方程为$\frac{x^2}{a^2}-{y^2}$=1(a∈R且a≠0),则“a>1”是“曲线C是焦点在x轴上的双曲线”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=e|x|-$\frac{1}{{x}^{2}}$,设a=sin2,b=cos2,c=tan2,则(  )
A.f(a)<f(b)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.命题:“?x∈Q,x2-8=0”的否定是?x∈Q,x2-8≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线y=x+m与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1有两个公共点,则m的取值范围是(  )
A.(-5,5)B.(-2,2)C.(-$\sqrt{7}$,$\sqrt{7}$)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点M是圆C:(x-1)2+(y-4)2=1上的点,不等式组$\left\{\begin{array}{l}{x+2y+4≥0}\\{x+4y≤0}\\{x+(a-1)y+2(a-1)≤0}\\{\;}\end{array}\right.$(a≠1)表示的平面区域为Ω,点P是Ω上一点,若|PM|的最小值为$\sqrt{17}$-1,则实数a的取值范围为(  )
A.(-∞,1)B.(-3,1)C.(1,+∞)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的通项公式为an=n(n+1)($\frac{1}{2}$)n.若数列最大项为at,则t=(  )
A.2B.3C.4D.2或3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为调查了解某药物使用后病人的康复时间,从1000个使用该药的病人的康复时间中抽取了24个样本,数据如下图中的茎叶图(单位:周).专家指出康复时间在7周之内(含7周)是快效时间.
(1)求这24个样本中达到快效时间的频率;
(2)以(1)中的频率作为概率,从这1000个病人中随机选取3人,记这3人中康复时间达到快效时间的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}前n项和为Sn,a1=2,5a3=3a5,对任意的n∈N*,都有$\frac{2{b}_{1}}{{a}_{3}}$+$\frac{2{b}_{2}}{{a}_{4}}$+$\frac{2{b}_{3}}{{a}_{5}}$+…+$\frac{2{b}_{n}}{{a}_{n+2}}$=$\frac{1}{2}$-$\frac{1}{{2}^{n+1}}$.
(1)求数列{bn}的通项公式;
(2)求数列{$\frac{{b}_{n}}{{S}_{n}}$}的前n项和T.

查看答案和解析>>

同步练习册答案