精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知函数,其中
(Ⅰ)求上的单调区间;
(Ⅱ)求为自然对数的底数)上的最大值;
(III)对任意给定的正实数,曲线上是否存在两点,使得是以原点为直角顶点的直角三角形,且此三角形斜边中点在轴上?

(1)上的单调减区间为 :单调增区间为 
(2)上的最大值为2
(3) 对任意给定的正实数,曲线上存在两点,使得△是以为直角顶点的直角三角形,且此三角形斜边中点在轴上

解析试题分析:(Ⅰ)因为
时,
得到;解得到.所以上的单调减区间为 :单调增区间为     ………………4分
(Ⅱ)①当时,由(Ⅰ)知在上单调递减,在上单调递增,从而处取得极大值
,所以上的最大值为2.……………………6分
②当时,,当时,上单调递增,所以上的最大值为.所以当时,上的最大值为;当时,上的最大值为2.                             …………………………8分
(Ⅲ)假设曲线上存在两点,使得是以为直角顶点的直角三角形,则只能在轴的两侧,不妨设,则,且. …9分
因为是以为直角顶点的直角三角形,所以
即:(1)             ……………………………………10分
是否存在点等价于方程(1)是否有解.
,则,代入方程(1)得:,此方程无解.…11分
,则,代入方程(1)得到:             ……12分
,则上恒成立.所以上单调递增,从而,即有的值域为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,设
(1)试确定的取值范围,使得函数上为单调函数;
(2)求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).

(1)分别将AB两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量
(1)将利润表示为月产量的函数
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
,且
(1)求的最小值及相应 x的值;
(2)若,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)已知函数在点处的切线与直线垂直.
(1)若对于区间上任意两个自变量的值都有,求实数的最小值;
(2)若过点可作曲线的三条切线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数,且不等式的解集为
(1)求的值;
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知函数
(1)若上的最大值为,求实数的值;
(2)若对任意,都有恒成立,求实数的取值范围;
(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(11分) 已知函数在定义域上为增函数,且满足
(1)求的值           (2)解不等式

查看答案和解析>>

同步练习册答案