精英家教网 > 高中数学 > 题目详情
17.设φ(x)=sin2[(2n+$\frac{1}{2}$)π-x]+cos2(x-$\frac{3}{2}$π)+cos2(π-x)(n∈Z),求φ($\frac{π}{3}$)的值.

分析 先根据诱导公式化简,再代入值计算即可.

解答 解:设φ(x)=sin2[(2n+$\frac{1}{2}$)π-x]+cos2(x-$\frac{3}{2}$π)+cos2(π-x)=sin2($\frac{1}{2}$π-x)+sin2x+cos2x=cos2x+1,
故φ($\frac{π}{3}$)=cos2($\frac{π}{3}$)+1=$\frac{5}{4}$.

点评 本题考查了诱导公式和函数值的求法,关键是掌握诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知等比数列{an}的前n项和为Sn,a1=1,S6=9S3
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=1+log2an,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α=$\frac{π}{4}$),以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相同的长度单位,建立极坐标系.曲线C的极坐标方程为ρsin2θ=4cosθ.
(1)求曲线C的直角坐标方程:
(2)设直线1与曲线C相交于A、B两点.求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.关于函数f(x)=$lg\frac{{{x^2}+1}}{|x|}$(x≠0),有下列命题:
①f(x)的最小值是lg2;
②其图象关于y轴对称;
③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;
④f(x)在区间(-1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义某种运算S=a?b,运算原理如图所示,则式子:$sin\frac{5π}{3}?ln\frac{1}{e}+{(\frac{1}{3})^{-\frac{1}{2}}}?lg100$的值是(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线的方程为y=x2,直线l的方程为2x-y-4=0.P为抛物线上的一个动点.
(1)若点P到直线l的距离最短,求点P的坐标:
(2)若动点P到x轴的距离为d1,点P到直线l的距离为d2,求d1+d2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.随机地从区间[0,1]任取两数,分别记为x、y,则x2+y2≤1的概率P=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{π}{4}$D.1-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正三棱锥的侧棱长为2$\sqrt{3}$,侧棱与底面所成的角为60°,则该棱锥的体积为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{4}$C.$\frac{9\sqrt{3}}{4}$D.$\frac{27\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.给出以下结论:
①函数$y=\frac{1}{x}$在其定义域内是减函数
②函数y=x2-2x的零点只有两个
③若函数f(2x)的定义域为[1,2],则函数f(2x)的定义域为[1,2]
④若函数f(x)=lg(x2+mx+1)(m∈R)的值域为R,则实数m的取值范围为(-∞,-2]∪[2,+∞),其中说法正确的序号是③④.(请把正确的序号全部写上)

查看答案和解析>>

同步练习册答案