精英家教网 > 高中数学 > 题目详情

若关于的不等式内有解,则实数的取值范围是( )

A.         B.          C.         D.

 

【答案】

D

【解析】

试题分析:关于的不等式内有解,

即:a<2x²-8x-4在1<x<4内有解,

令f(x)=2x²-8x-4=2(x-2)²-12

当x=2时f(x)取最小值f(2)=-12

当x=4时f(x)取最大值f(4)=2(4-2)²-12=-4

所以-12=<f(x)<-4

要使a<f(x)有解,则a不能大于也不能等于-4,否则a>=-4>f(x)

所以a的取值范围是a<-4,故选D。

考点:本题主要考查一元二次不等式解的讨论,二次函数的性质。

点评:中档题,此类问题的一般解法就是转化成而产生的最值问题,结合二次函数的图象和性质加以解决。

 

练习册系列答案
相关习题

科目:高中数学 来源:大厂高级中学2006-2007学年第一学期月考试卷、高二数学 题型:013

若关于x的不等式内有解,则实数a的取值范围是

[  ]

A.a<-4

B.a>-4

C.a>-12

D.a<-12

查看答案和解析>>

科目:高中数学 来源:2014届福建省福州外国语学校高二上学期期中考试数学试卷(解析版) 题型:选择题

若关于的不等式内有解,则实数的取值范围是

    A.         B.        C.           D.

 

查看答案和解析>>

科目:高中数学 来源:2014届广东省汕头市高二10月月考文科数学试卷(解析版) 题型:选择题

若关于的不等式内有解,则实数的取值范围是(   )

A.           B.

C.            D.

 

查看答案和解析>>

科目:高中数学 来源:2011年福建省罗源县第一中学高二上学期期中考试理科数学 题型:单选题

若关于的不等式x2-3x-2-a >0在1<x<4内有解,则实数的取值范围是 (      )

A.a<-4B.a>-4C.a>2D.a<2

查看答案和解析>>

同步练习册答案