精英家教网 > 高中数学 > 题目详情

已知四棱锥(如图)底面是边长为2的正方形.侧棱底面分别为的中点,

   (Ⅰ)求证:平面⊥平面

   (Ⅱ)直线与平面所成角的正弦值为,求PA的长;

   (Ⅲ)在条件(Ⅱ)下,求二面角的余弦值。

(1)证明见解析(2)2 (3)


解析:

(Ⅰ)证明:∵PA⊥底面ABCD,MN底面ABCD

∴MN⊥PA   又MN⊥AD   且PA∩AD=A

∴MN⊥平面PAD  ………………3分

MN平面PMN   ∴平面PMN⊥平面PAD  …………4分

(Ⅱ)∵BC⊥BA   BC⊥PA   PA∩BA=A   ∴BC⊥平面PBA

∴∠BPC为直线PC与平面PBA所成的角 

…………7分

在Rt△PBC中,PC=BC/sin∠BPC=

  ………………10分

(Ⅲ)由(Ⅰ)MN⊥平面PAD知   PM⊥MN   MQ⊥MN

∴∠PMQ即为二面角P—MN—Q的平面角  …………12分

   …………14分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(Ⅰ)求证:AB∥平面PCD;
(Ⅱ)求证:BC⊥平面PAC;
(Ⅲ)若M是PC的中点,求三棱锥M-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD为正方形,侧面PDC为正三角形,且面PDC⊥面ABCD,E为PC中点.
(1)求证:PA∥平面BDE;
(2)求证:平面BDE⊥平面PBC;
(3)求二面角D-PB-C的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠BCD=60°,BC=1,E为CD的中点,PC与平面ABCD成60°角.
(1)求证:平面EPB⊥平面PBA;
(2)求二面角P-BD-A 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC中点.
(1)求证:平面EDB⊥平面PBC;
(2)求二面角B-DE-C的平面角的正切值.

查看答案和解析>>

同步练习册答案