【题目】五位同学各自制作了一张贺卡,分别装入5个空白信封内,这五位同学每人随机地抽取一封,则恰好有两人抽取到的贺卡是其本人制作的概率是______________.
【答案】
【解析】
试题根据题意,首先由排列数公式分析可得5位同学每人随机地抽取1张卡片的情况;进而分两步分析5人中恰好有2人抽取到的贺卡是其本人制作的情况数目,①先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,②分析抽到的都不是其本人制作的3人,由分步计数原理可得其情况数目,由等可能事件的概率公式,计算可得答案.
根据题意,共5张贺卡,5位同学每人随机地抽取1张,有A55=120种情况,要满足5人中恰好有2人抽取到的贺卡是其本人制作,可以先在5人中抽出2人,使其抽取到的贺卡是其本人制作的,有C52=10种情况,则剩余的3人,抽到的都不是其本人制作的,有2种情况,则5人中恰好有2人抽取到的贺卡是其本人制作的情况有10×2=20种,
其概率
科目:高中数学 来源: 题型:
【题目】过轴正半轴上的动点作曲线:的切线,切点为,,线段的中点为,设曲线与轴的交点为.
(1)求的大小及的轨迹方程;
(2)当动点到直线的距离最小时,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,为坐标原点,过点的直线与交于、两点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与轴的交点为,且,,试探究:是否为定值.若为定值,求出该定值,若不为定值,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是数列的前项和,对任意都有成立(其中是常数).
(1)当时,求:
(2)当时,
①若,求数列的通项公式:
②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“数列”,如果,试问:是否存在数列为“数列”,使得对任意,都有,且,若存在,求数列的首项的所有取值构成的集合;若不存在.说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,侧棱底面,底面是直角梯形,∥,,且,,是棱的中点 .
(Ⅰ)求证:∥平面;
(Ⅱ)求平面与平面所成锐二面角的余弦值;
(Ⅲ)设点是线段上的动点,与平面所成的角为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的左右顶点分别为.直线和两条渐近线交于点,点在第一象限且,是双曲线上的任意一点.
(1)求双曲线的标准方程;
(2)是否存在点P使得为直角三角形?若存在,求出点P的个数;
(3)直线与直线分别交于点,证明:以为直径的圆必过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com