精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和为Sn,a1=$\frac{1}{2}$,4Sn-12+an(4Sn-1+1)=0(n≥2)
(1)求数列{an}的通项公式;
(2)设Sn=(4n+2)bn,数列{bn}的前n项和为Tn,cn=$\frac{(2n+1)}{{2}^{n}}$Tn,求数列{cn}的前n项和Mn

分析 (1)利用an=Sn-Sn-1化简可知4SnSn-1=Sn-1-Sn,进而可知数列{$\frac{1}{{S}_{n}}$}是以2为首项、4为公差的等差数列,计算即得结论;
(2)通过(1)可知Sn=$\frac{1}{2}$•$\frac{1}{2n-1}$,通过Sn=(4n+2)bn、裂项可知bn=$\frac{1}{8}$•($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并项相加得Tn=$\frac{1}{4}$•$\frac{n}{2n+1}$,从而cn=$\frac{1}{4}$•$\frac{n}{{2}^{n}}$,利用错位相减法计算即得结论.

解答 解:(1)依题意,4Sn-12+an(4Sn-1+1)=4Sn-12+(Sn-Sn-1)(4Sn-1+1)
=4Sn-12+Sn(4Sn-1+1)-Sn-1(4Sn-1+1)
=Sn(4Sn-1+1)-Sn-1
=0,
∴4SnSn-1=Sn-1-Sn
∴4=$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$,
又∵$\frac{1}{{S}_{1}}$=$\frac{1}{{a}_{1}}$=$\frac{1}{\frac{1}{2}}$=2,
∴数列{$\frac{1}{{S}_{n}}$}是以2为首项、4为公差的等差数列,
∴$\frac{1}{{S}_{n}}$=2+4(n-1)=4n-2,
∴Sn=$\frac{1}{4n-2}$=$\frac{1}{2}$•$\frac{1}{2n-1}$,
∴an=Sn-Sn-1=$\frac{1}{2}$•$\frac{1}{2n-1}$-$\frac{1}{2}$•$\frac{1}{2n-3}$=-$\frac{1}{(2n-1)(2n-3)}$,
又∵a1=$\frac{1}{2}$不满足上式,
∴数列{an}的通项公式an=$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{-\frac{1}{(2n-1)(2n-3)},}&{n≥2}\end{array}\right.$;
(2)由(1)可知,Sn=$\frac{1}{2}$•$\frac{1}{2n-1}$,
∵Sn=(4n+2)bn
∴bn=$\frac{{S}_{n}}{2(2n+1)}$=$\frac{1}{4}$•$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{8}$•($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=b1+b2+…+bn
=$\frac{1}{8}$•(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{8}$•(1-$\frac{1}{2n+1}$)
=$\frac{1}{4}$•$\frac{n}{2n+1}$,
∴cn=$\frac{(2n+1)}{{2}^{n}}$Tn
=$\frac{(2n+1)}{{2}^{n}}$•$\frac{1}{4}$•$\frac{n}{2n+1}$
=$\frac{1}{4}$•$\frac{n}{{2}^{n}}$,
∴Mn=$\frac{1}{4}$(1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+n•$\frac{1}{{2}^{n}}$),
∴$\frac{1}{2}$•Mn=$\frac{1}{4}$[1•$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$+n•$\frac{1}{{2}^{n+1}}$],
两式相减得:$\frac{1}{2}$•Mn=$\frac{1}{4}$[$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$]
=$\frac{1}{4}$•[$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n+1}}$]
=$\frac{1}{4}$(1-$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$),
∴Mn=$\frac{1}{2}$(1-$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$)
=$\frac{1}{2}$-$\frac{1}{{2}^{n+1}}$-n•$\frac{1}{{2}^{n+2}}$.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,则a6的值为$\frac{3}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的奇函数f(x)满足对任意的x有f(x-1)=f(4-x)且f(x)=x,x∈(0,$\frac{3}{2}$),则f(2015)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在“①(M∩P)⊆P,②(M∪P)⊆P,③(M∩P)⊆(M∪P),④若M⊆P,则M∩P=M”这四个结论中,正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cos(2x-$\frac{4π}{3}$)+4cos2x-1,且f($\frac{α}{2}$-$\frac{π}{6}$)=-$\frac{1}{5}$,求sin(α+$\frac{3π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,D是△ABC的BC边上的一点,O1,O2和O3分别为△ABC,△ADB和△ADC外接圆的圆心,求证:A,O2,O1,O3四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线y=kx+3与圆C:(x-3)2+(y-2)2=4相交于M,N两点,若∠MCN<90°,则k的值为{k|k<-$\frac{1}{7}$或k>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知复数z1,z2满足:$\overline{{z}_{1}}$•z2-|z1|是纯虚数,z2+i是实数,其中z1=1+i,i是虚数单位.
(1)求$\overline{{z}_{1}}$及|z1|;
(2)求复平面内表示复数z2的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{ex}{{e}^{x}}$(e为自然数的底数).
(1)是否存在正实数x使得f(1-x)=f(1+x),若存在,求出x,否则说明理由;
(2)若存在不等实数x1,x2,使得f(x1)=f(x2),证明:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

同步练习册答案