分析 (1)利用an=Sn-Sn-1化简可知4SnSn-1=Sn-1-Sn,进而可知数列{$\frac{1}{{S}_{n}}$}是以2为首项、4为公差的等差数列,计算即得结论;
(2)通过(1)可知Sn=$\frac{1}{2}$•$\frac{1}{2n-1}$,通过Sn=(4n+2)bn、裂项可知bn=$\frac{1}{8}$•($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),并项相加得Tn=$\frac{1}{4}$•$\frac{n}{2n+1}$,从而cn=$\frac{1}{4}$•$\frac{n}{{2}^{n}}$,利用错位相减法计算即得结论.
解答 解:(1)依题意,4Sn-12+an(4Sn-1+1)=4Sn-12+(Sn-Sn-1)(4Sn-1+1)
=4Sn-12+Sn(4Sn-1+1)-Sn-1(4Sn-1+1)
=Sn(4Sn-1+1)-Sn-1
=0,
∴4SnSn-1=Sn-1-Sn,
∴4=$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$,
又∵$\frac{1}{{S}_{1}}$=$\frac{1}{{a}_{1}}$=$\frac{1}{\frac{1}{2}}$=2,
∴数列{$\frac{1}{{S}_{n}}$}是以2为首项、4为公差的等差数列,
∴$\frac{1}{{S}_{n}}$=2+4(n-1)=4n-2,
∴Sn=$\frac{1}{4n-2}$=$\frac{1}{2}$•$\frac{1}{2n-1}$,
∴an=Sn-Sn-1=$\frac{1}{2}$•$\frac{1}{2n-1}$-$\frac{1}{2}$•$\frac{1}{2n-3}$=-$\frac{1}{(2n-1)(2n-3)}$,
又∵a1=$\frac{1}{2}$不满足上式,
∴数列{an}的通项公式an=$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{-\frac{1}{(2n-1)(2n-3)},}&{n≥2}\end{array}\right.$;
(2)由(1)可知,Sn=$\frac{1}{2}$•$\frac{1}{2n-1}$,
∵Sn=(4n+2)bn,
∴bn=$\frac{{S}_{n}}{2(2n+1)}$=$\frac{1}{4}$•$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{8}$•($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=b1+b2+…+bn
=$\frac{1}{8}$•(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{8}$•(1-$\frac{1}{2n+1}$)
=$\frac{1}{4}$•$\frac{n}{2n+1}$,
∴cn=$\frac{(2n+1)}{{2}^{n}}$Tn
=$\frac{(2n+1)}{{2}^{n}}$•$\frac{1}{4}$•$\frac{n}{2n+1}$
=$\frac{1}{4}$•$\frac{n}{{2}^{n}}$,
∴Mn=$\frac{1}{4}$(1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+3•$\frac{1}{{2}^{3}}$+…+n•$\frac{1}{{2}^{n}}$),
∴$\frac{1}{2}$•Mn=$\frac{1}{4}$[1•$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$+n•$\frac{1}{{2}^{n+1}}$],
两式相减得:$\frac{1}{2}$•Mn=$\frac{1}{4}$[$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$]
=$\frac{1}{4}$•[$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n+1}}$]
=$\frac{1}{4}$(1-$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$),
∴Mn=$\frac{1}{2}$(1-$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$)
=$\frac{1}{2}$-$\frac{1}{{2}^{n+1}}$-n•$\frac{1}{{2}^{n+2}}$.
点评 本题考查数列的通项,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com