精英家教网 > 高中数学 > 题目详情
点A(3,2)为定点,点F是抛物线y2=4x的焦点,点P在抛物线y2=4x上移动,若|PA|+|PF|取得最小值,则点P的坐标为______.
由P向准线x=-
1
2
作垂线,垂足为M,由抛物线的定义,PF=PM,再由定点A向准线作垂线,垂足为N,
那么点P在该抛物线上移动时,有|PA+|PF|=|PA|+|PM|≥|AN|,当且仅当A,P,N三点共线时,
取得最小值AN=3-(-
1
2
)=
7
2
,此时P的纵坐标为2,进而求得横坐标为1.
故|PA|+|PF|取得最小值时P点的坐标是(1,2),
故答案为:(1,2).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

抛物线y=-
1
8
x2的焦点坐标是(  )
A.(0,
1
16
B.(-
1
16
,0)
C.(0,2)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线x2=2py(p>0)内接Rt△OAB(O为坐标原点)的斜边AB过点(  )
A.(2p,0)B.(p,0)C.(0,2p)D.(0,p)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x上一点到焦点的距离为5,这点的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过点(-1,1)作直线,若它与抛物线y2=4x有且只有一个公共点,这样的直线共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2px(p>0)上的点M到x轴的距离为3,点M到准线的距离为5,则p=(  )
A.1B.9C.
1
2
或9
D.1或9

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y2=4x的焦点F的坐标是______,若点P是该抛物线任意一点,点A(6,3),则|PA|+|PF|的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知M是抛物线y2=-8x上的一个动点,M到直线x=2的距离是d1,M到直线x-y=4的距离是d2,则d1+d2的最小值是(  )
A.0B.2
2
C.3
2
D.不存在

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设抛物线y2=-8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足,如果直线AF的斜率为
3
,那么|PF|=(  )
A.4
3
B.8
3
C.8D.16

查看答案和解析>>

同步练习册答案